Using diffusion MRI to discriminate areas of cortical grey matter

Abstract Cortical area parcellation is a challenging problem that is often approached by combining structural imaging (e.g., quantitative T1, diffusion‐based connectivity) with functional imaging (e.g., task activations, topological mapping, resting state correlations). Diffusion MRI (dMRI) has been widely adopted to analyse white matter microstructure, but scarcely used to distinguish grey matter regions because of the reduced anisotropy there. Nevertheless, differences in the texture of the cortical ‘fabric’ have long been mapped by histologists to distinguish cortical areas. Reliable area‐specific contrast in the dMRI signal has previously been demonstrated in selected occipital and sensorimotor areas. We expand upon these findings by testing several diffusion‐based feature sets in a series of classification tasks. Using Human Connectome Project (HCP) 3T datasets and a supervised learning approach, we demonstrate that diffusion MRI is sensitive to architectonic differences between a large number of different cortical areas defined in the HCP parcellation. By employing a surface‐based cortical imaging pipeline, which defines diffusion features relative to local cortical surface orientation, we show that we can differentiate areas from their neighbours with higher accuracy than when using only fractional anisotropy or mean diffusivity. The results suggest that grey matter diffusion may provide a new, independent source of information for dividing up the cortex. HighlightsDiffusion MRI provides architectonic contrast between a variety of cortical areas.dMRI provides complementary information in areas of low myelin content.High order rotational invariants provide more reliable parcellation results.

[1]  P. Morosan,et al.  Quantitative Architectural Analysis: A New Approach to Cortical Mapping , 2009, Journal of autism and developmental disorders.

[2]  A. Anwander,et al.  Connectivity-Based Parcellation of Broca's Area. , 2006, Cerebral cortex.

[3]  Ben Jeurissen,et al.  The role of whole‐brain diffusion MRI as a tool for studying human in vivo cortical segregation based on a measure of neurite density , 2018, Magnetic resonance in medicine.

[4]  Matthew F. Glasser,et al.  Trends and Properties of Human Cerebral Cortex: Correlations with Cortical Myelin Content Introduction and Review , 2022 .

[5]  Christine L. Tardif,et al.  A subject-specific framework for in vivo myeloarchitectonic analysis using high resolution quantitative MRI , 2016, NeuroImage.

[6]  F. Dick,et al.  Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy† , 2012, Cerebral cortex.

[7]  Daniel S. Margulies,et al.  Body Topography Parcellates Human Sensory and Motor Cortex , 2017, Cerebral cortex.

[8]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[9]  S. Francis,et al.  Correspondence of human visual areas identified using functional and anatomical MRI in vivo at 7 T , 2012, Journal of magnetic resonance imaging : JMRI.

[10]  Robert Turner,et al.  Connectivity architecture and subdivision of the human inferior parietal cortex revealed by diffusion MRI. , 2014, Cerebral cortex.

[11]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.

[12]  E. Marom 4211 Artifacts and pitfalls in PET/CT , 2006 .

[13]  R. Turner,et al.  Microstructural Parcellation of the Human Cerebral Cortex: From Brodmann's Post-Mortem Map to in Vivo Mapping with High-Field Magnetic Resonance Imaging , 2013 .

[14]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[15]  Bernhard Preim,et al.  A cytoarchitecture-driven myelin model reveals area-specific signatures in human primary and secondary areas using ultra-high resolution in-vivo brain MRI , 2015, NeuroImage.

[16]  K. Zilles,et al.  Brain atlases - a new research tool , 1994, Trends in Neurosciences.

[17]  A. Snyder,et al.  Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. , 2002, AJNR. American journal of neuroradiology.

[18]  S. Arridge,et al.  Detection and modeling of non‐Gaussian apparent diffusion coefficient profiles in human brain data , 2002, Magnetic resonance in medicine.

[19]  Daniel C. Alexander,et al.  NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain , 2012, NeuroImage.

[20]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[21]  David G. Norris,et al.  Diffusion tensor characteristics of gyrencephaly using high resolution diffusion MRI in vivo at 7T , 2015, NeuroImage.

[22]  Bruce Fischl,et al.  Microstructural parcellation of the human brain , 2018, NeuroImage.

[23]  Denis Le Bihan,et al.  Looking into the functional architecture of the brain with diffusion MRI , 2003, Nature Reviews Neuroscience.

[24]  P. Basser,et al.  Axcaliber: A method for measuring axon diameter distribution from diffusion MRI , 2008, Magnetic resonance in medicine.

[25]  Steen Moeller,et al.  Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project , 2013, NeuroImage.

[26]  Angela R. Laird,et al.  Cytoarchitecture, probability maps and functions of the human frontal pole , 2014, NeuroImage.

[27]  M. Sereno,et al.  From monkeys to humans: what do we now know about brain homologies? , 2005, Current Opinion in Neurobiology.

[28]  J. Allman,et al.  Retinotopic organization of extrastriate cortex in the owl monkey—dorsal and lateral areas , 2015, Visual Neuroscience.

[29]  D. Le Bihan,et al.  Diffusion tensor imaging: Concepts and applications , 2001, Journal of magnetic resonance imaging : JMRI.

[30]  Rachid Deriche,et al.  Complete Set of Invariants of a 4 th Order Tensor: The 12 Tasks of HARDI from Ternary Quartics , 2014, MICCAI.

[31]  S. Bok Der Einflu\ der in den Furchen und Windungen auftretenden Krümmungen der Gro\hirnrinde auf die Rindenarchitektur , 1929 .

[32]  C. Leonard,et al.  Normal variation in the frequency and location of human auditory cortex landmarks. Heschl's gyrus: where is it? , 1998, Cerebral cortex.

[33]  A. Schleicher,et al.  Two different areas within the primary motor cortex of man , 1996, Nature.

[34]  F. Dick,et al.  In Vivo Functional and Myeloarchitectonic Mapping of Human Primary Auditory Areas , 2012, The Journal of Neuroscience.

[35]  Pierre-Louis Bazin,et al.  Anatomically motivated modeling of cortical laminae , 2014, NeuroImage.

[36]  S. B. Eickhoff,et al.  Quantitative architectural analysis: a new approach to cortical mapping , 2005, Anatomy and Embryology.

[37]  Jörg Felder,et al.  Automatic Segmentation of Human Cortical Layer-Complexes and Architectural Areas Using Ex vivo Diffusion MRI and Its Validation , 2016, Front. Neurosci..

[38]  Mark W. Woolrich,et al.  Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models , 2009, NeuroImage.

[39]  Timothy Edward John Behrens,et al.  Relating connectional architecture to grey matter function using diffusion imaging , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[40]  Timothy Edward John Behrens,et al.  High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession , 2009, NeuroImage.

[41]  B. Lewis,et al.  II. The cortical lamination of the motor area of the brain , 1878, Proceedings of the Royal Society of London.

[42]  Geoffrey J. M. Parker,et al.  Probabilistic quantification of regional cortical microstructural complexity , 2010 .

[43]  Timothy Edward John Behrens,et al.  Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[44]  A. Schleicher,et al.  21 – Quantitative Analysis of Cyto- and Receptor Architecture of the Human Brain , 2002 .

[45]  Nikolaus Weiskopf,et al.  1011 Combining HARDI Datasets With More Than One b – Value Improves Diffusion MRI-Based Cortical Parcellation , 2013 .

[46]  R. Turner,et al.  Layer-Specific Intracortical Connectivity Revealed with Diffusion MRI , 2012, Cerebral cortex.

[47]  A. Snyder,et al.  Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI. , 2002, Cerebral cortex.

[48]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[49]  J. Pekar,et al.  MR color mapping of myelin fiber orientation. , 1991, Journal of computer assisted tomography.

[50]  Lawrence L. Wald,et al.  Surface based analysis of diffusion orientation for identifying architectonic domains in the in vivo human cortex , 2013, NeuroImage.

[51]  Khader M Hasan,et al.  Diffusion tensor imaging of the developing human cerebrum , 2005, Journal of neuroscience research.

[52]  R. Turner,et al.  Optimised in vivo visualisation of cortical structures in the human brain at 3 T using IR-TSE. , 2008, Magnetic resonance imaging.

[53]  Andrew Jones,et al.  Comparative Mapping , 2001 .

[54]  Jürgen Hennig,et al.  Disentangling micro from mesostructure by diffusion MRI: A Bayesian approach , 2017, NeuroImage.

[55]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[56]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[57]  Julien Cohen-Adad,et al.  What can we learn from T2* maps of the cortex? , 2014, NeuroImage.

[58]  Robert Turner,et al.  Diffusion imaging in humans at 7T using readout‐segmented EPI and GRAPPA , 2010, Magnetic resonance in medicine.

[59]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[60]  Baba C. Vemuri,et al.  Regularized positive-definite fourth order tensor field estimation from DW-MRI , 2009, NeuroImage.

[61]  David L. Thomas,et al.  Using High Angular Resolution Diffusion Imaging Data to Discriminate Cortical Regions , 2013, PloS one.

[62]  Alfred Anwander,et al.  A hierarchical method for whole‐brain connectivity‐based parcellation , 2014, Human brain mapping.

[63]  A. Schleicher,et al.  The Somatosensory Cortex of Human: Cytoarchitecture and Regional Distributions of Receptor-Binding Sites , 1997, NeuroImage.

[64]  Mapping the human , 2018, Nature Methods.

[65]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[66]  Richard Bowtell,et al.  Regional structural differences across functionally parcellated Brodmann areas of human primary somatosensory cortex , 2014, NeuroImage.

[67]  K. Amunts,et al.  Architectonic Mapping of the Human Brain beyond Brodmann , 2015, Neuron.

[68]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[69]  Jon H. Kaas,et al.  The somatosensory cortex , 1996 .

[70]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[71]  W. Krieg Functional Neuroanatomy , 1953, Springer Series in Experimental Entomology.

[72]  Jerome N. Sanes,et al.  Primary Motor Cortex , 2010 .

[73]  Hui Zhang,et al.  Axon diameter mapping in the presence of orientation dispersion with diffusion MRI , 2011, NeuroImage.

[74]  Timothy Edward John Behrens,et al.  Ball and rackets: Inferring fiber fanning from diffusion-weighted MRI , 2012, NeuroImage.

[75]  Holly Bridge,et al.  Delineating extrastriate visual area MT(V5) using cortical myeloarchitecture , 2014, NeuroImage.

[76]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[77]  A. Schleicher,et al.  The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. , 2006, Cerebral cortex.

[78]  Thomas R. Knösche,et al.  In vivo measurement of cortical anisotropy by diffusion-weighted imaging correlates with cortex type , 2010 .

[79]  D. Le Bihan,et al.  Artifacts and pitfalls in diffusion MRI , 2006, Journal of magnetic resonance imaging : JMRI.

[80]  Tim B. Dyrby,et al.  Orientationally invariant indices of axon diameter and density from diffusion MRI , 2010, NeuroImage.

[81]  L. White,et al.  Structure of the human sensorimotor system. I: Morphology and cytoarchitecture of the central sulcus. , 1997, Cerebral cortex.

[82]  Thomas R. Knösche,et al.  k-space and q-space: Combining ultra-high spatial and angular resolution in diffusion imaging using ZOOPPA at 7T , 2012, NeuroImage.

[83]  Daniel C. Alexander,et al.  An Unsupervised Group Average Cortical Parcellation Using Diffusion MRI to Probe Cytoarchitecture , 2016, MICCAI 2016.

[84]  Bruce Fischl,et al.  Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: A possible marker for primary cortex and hemispheric differences , 2006, NeuroImage.

[85]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[86]  Jan Sijbers,et al.  Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data , 2014, NeuroImage.

[87]  Karl Zilles,et al.  Cyto- and receptor architectonic mapping of the human brain. , 2018, Handbook of clinical neurology.

[88]  Susumu Mori,et al.  Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI , 2015, NeuroImage.

[89]  G. Orban,et al.  Comparative mapping of higher visual areas in monkeys and humans , 2004, Trends in Cognitive Sciences.

[90]  T. Mareci,et al.  Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging , 2003, Magnetic resonance in medicine.

[91]  K. Zilles,et al.  Functional neuroanatomy of the primate isocortical motor system , 2000, Anatomy and Embryology.

[92]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[93]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[94]  Rachid Deriche,et al.  Constrained diffusion kurtosis imaging using ternary quartics & MLE , 2014, Magnetic resonance in medicine.

[95]  Daniel C. Alexander,et al.  Multi-compartment microscopic diffusion imaging , 2016, NeuroImage.

[96]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[97]  Katrin Amunts,et al.  Locating the functional and anatomical boundaries of human primary visual cortex , 2009, NeuroImage.

[98]  A. Campbell Histological Studies on the Localisation of Cerebral Function , 2009 .