Exponential mean-square stability properties of stochastic linear multistep methods
暂无分享,去创建一个
[1] Angel Tocino,et al. Asymptotic mean-square stability of two-step Maruyama schemes for stochastic differential equations , 2014, J. Comput. Appl. Math..
[2] Etienne Emmrich. Two-step Bdf Time Discretisation of Nonlinear Evolution Problems Governed by Monotone Operators with Strongly Continuous Perturbations , 2009, Comput. Methods Appl. Math..
[3] Ernst Hairer,et al. Examples of Stiff Equations , 1996 .
[4] G. Dahlquist. Error analysis for a class of methods for stiff non-linear initial value problems , 1976 .
[5] Desmond J. Higham,et al. Numerical methods for nonlinear stochastic differential equations with jumps , 2005, Numerische Mathematik.
[6] G. Dahlquist. A special stability problem for linear multistep methods , 1963 .
[7] Raffaele D'Ambrosio,et al. Drift-preserving numerical integrators for stochastic Hamiltonian systems , 2020, Adv. Comput. Math..
[8] Desmond J. Higham,et al. Exponential mean square stability of numerical solutions to stochastic differential equations , 2003 .
[9] Raffaele D'Ambrosio,et al. Nonlinear stability issues for stochastic Runge-Kutta methods , 2021, Commun. Nonlinear Sci. Numer. Simul..
[10] Raphael Kruse,et al. Mean-square convergence of the BDF2-Maruyama and backward Euler schemes for SDE satisfying a global monotonicity condition , 2015, 1509.00609.
[11] Inmaculada Higueras,et al. Strong Stability for Additive Runge-Kutta Methods , 2006, SIAM J. Numer. Anal..
[12] J. Butcher. Thirty years of G-stability , 2006 .
[13] Andrew M. Stuart,et al. Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations , 2002, SIAM J. Numer. Anal..