On functional iteration and the calculation of roots

This paper has the dual objectives of (1) setting theoretical limits to the rates of convergence of iteration processes towards the zeros of a function when the values of the function, or the values of the function and its derivatives, are available and (2) suggesting new families of computationally effective iteration formulas. The proofs of the theorems stated, numerical verification of theoretical error estimates, various specific applications, and results concerning work on variations of the themes reported here, will appear later.

[1]  E. Bodewig,et al.  On types of convergence and on the behavior of approximations in the neighborhood of a multiple root of an equation , 1949 .

[2]  Paul A. Samuelsos A Convergent Iterative Process , 1945 .

[3]  P. Morse,et al.  Principles of Numerical Analysis , 1954 .

[4]  Alexander Ostrowski,et al.  Über Verfahren von Steffensen und Householder zur Konvergenzverbesserung von Iterationen , 1956 .

[5]  James Hardy Wilkinson,et al.  The evaluation of the zeros of ill-conditioned polynomials. Part I , 1959, Numerische Mathematik.

[6]  J. Hammersley,et al.  The Convergence of Numerical Iteration , 1953 .

[7]  Hans J. Maehly,et al.  Zur iterativen Auflösung algebraischer Gleichungen , 1954 .

[8]  D. D. Wall The order of an iteration formula , 1956 .

[9]  Robert E. Kalaba,et al.  Some numerical experiments using Newton's method for nonlinear parabolic and elliptic boundary-value problems , 1961, Commun. ACM.

[10]  T. KILBURN,et al.  Electronic Digital Computers , 1948, Nature.

[11]  E. H. Bateman The Solution of Algebraic and Transcendental Equations by Iteration , 1953, The Mathematical Gazette.

[12]  J. S. Frame The Solution of Equations by Continued Fractions , 1953 .

[13]  J. K. Stewart Another Variation of Newton's Method , 1951 .

[14]  F. Olver The evaluation of zeros of high-degree polynomials , 1952, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[15]  Joseph F. Traub,et al.  On a class of iteration formulas and some historical notes , 1961, CACM.

[16]  D. E. Muller A method for solving algebraic equations using an automatic computer , 1956 .

[17]  Werner L. Frank,et al.  Finding Zeros of Arbitrary Functions , 1958, JACM.

[18]  D. Greenspan On Popular Methods and Extant Problems in the Solution of Polynomial Equations , 1958 .

[19]  F. Heigl Über die Abschätzung der Wurzeln algebraischer Gleichungen , 1958 .

[20]  D. Hartree Notes on iterative processes , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.