Dual effects of proctolin on the rhythmic burst activity of the cardiac ganglion.

The neuropeptide proctolin has distinguishable excitatory effects upon premotor cells and motorneurons of Homarus cardiac ganglion. Proctolin's excitation of the small, premotor, posterior cells is rapid in onset (5-10 s) and readily reversible (less than 3 min). Prolonged bursts in small cells often produce a "doublet" ganglionic burst mode via interactions with large motorneuron burst-generating driver potentials. In contrast to small cell response, proctolin's direct excitatory effects upon motorneuron are slow in onset (60-90 s to peak) and long-lasting (10-20 min). The latter include: a concentration-dependent (10(-9)-10(-7)M) depolarization of the somatic membrane potential; increases in burst frequency and enhancement of the rate of depolarization of the interburst pacemaker potential. Experiments on isolated large cells indicate: the slow depolarization is produced by a decrease in the resting GK and proctolin can produce or enhance motorneuron autorhythmicity . A two- tiered non-hierarchical network model is proposed. The differential pharmacodynamics exhibited by the two cell types accounts for the sequential modes of ganglionic burst activity produced by proctolin.

[1]  I. Levitan,et al.  Serotonin increases an anomalously rectifying K+ current in the Aplysia neuron R15. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[2]  L. Salkoff Drosophila mutants reveal two components of fast outward current , 1983, Nature.

[3]  D. A. Brown,et al.  Pharmacological inhibition of the M‐current , 1982, The Journal of physiology.

[4]  E R Kandel,et al.  Serotonin modulates a specific potassium current in the sensory neurons that show presynaptic facilitation in Aplysia. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[5]  R. Traub,et al.  Cellular mechanism of neuronal synchronization in epilepsy. , 1982, Science.

[6]  R. Sullivan,et al.  Structure function analysis of an arthropod peptide hormone: Proctolin and synthetic analogues compared on the cockroach hindgut receptor , 1982, Peptides.

[7]  M. Miller,et al.  Some effects of proctolin on the cardiac ganglion of the Maine Lobster, Homarus americanus (Milne Edwards). , 1981, Journal of neurobiology.

[8]  M. Mirolli Fast inward and outward current channels in a non-spiking neurone , 1981, Nature.

[9]  G. Augustine,et al.  The neuropeptide proctolin acts directly onLimulus cardiac muscle to increase the amplityde of contraction , 1981, Brain Research.

[10]  D. A. Brown,et al.  Angiotensin mimics the action of muscarinic agonists on rat sympathetic neurones , 1980, Brain Research.

[11]  P. Adams,et al.  LUTEINIZING HORMONE‐RELEASING FACTOR AND MUSCARINIC AGONISTS ACT ON THE SAME VOLTAGE‐SENSITIVE K+ ‐CURRENT IN BULLFROG SYMPATHETIC NEURONES , 1980, British journal of pharmacology.

[12]  R. Sullivan A proctolin‐like peptide in crab pericardial organs , 1979 .

[13]  K. Tazaki,et al.  Isolation and characterization of slow, depolarizing responses of cardiac ganglion neurons in the crab, Portunus sanguinolentus. , 1979, Journal of neurophysiology.

[14]  K. Tazaki,et al.  Ionic bases of slow, depolarizing responses of cardiac ganglion neurons in the crab, Portunus sanguinolentus. , 1979, Journal of neurophysiology.

[15]  K Tazaki,et al.  Spontaneous electrical activity and interaction of large and small cells in cardiac ganglion of the crab, Portunus sanguinolentus. , 1979, Journal of neurophysiology.

[16]  D. Hartline Integrative Neurophysiology of the Lobster Cardiac Ganglion , 1979 .

[17]  M. Hanani,et al.  A potassium contribution to the response of the barnacle photoreceptor. , 1977, The Journal of physiology.

[18]  D. Hartline,et al.  Neurohormonal alteration of integrative properties of the cardiac ganglion of the lobster Homarus americanus. , 1975, The Journal of experimental biology.

[19]  E. Mayeri Functional Organization of the Cardiac Ganglion of the Lobster, Homarus americanus , 1973, The Journal of general physiology.

[20]  K. Tazaki IMPULSE ACTIVITY AND PATTERN OF LARGE AND SMALL NEURONES IN THE CARDIAC GANGLION OF THE LOBSTER, PANULIRUS JAPONICUS , 1973 .

[21]  A. Ebara,et al.  Changes in the electrical activity of the lobster cardiac ganglion caused by local application of high calcium or high potassium solutions. , 1972, The Japanese journal of physiology.

[22]  K Kusano,et al.  Evidence for an electrogenic sodium pump in follower cells of the lobster cardiac ganglion. , 1972, Journal of neurophysiology.

[23]  A. L. Wit,et al.  Conduction of the Cardiac Impulse , 1972, The Journal of general physiology.

[24]  K Tazaki,et al.  The effects of tetrodotoxin on the slow potential and spikes in the cardiac ganglion of a crab, Eriocheir japonicus. , 1971, The Japanese journal of physiology.

[25]  J. Connor,et al.  Burst activity and cellular interaction in the pacemaker ganglion of the lobster heart. , 1969, The Journal of experimental biology.

[26]  A. Watanabe,et al.  Acceleratory Synapses on Pacemaker Neurons in the Heart Ganglion of a Stomatopod, Squilla oratoria , 1968, The Journal of general physiology.

[27]  D. Maynard Cardiac inhibition in decapod Crustacea , 1961 .

[28]  A. Watanabe,et al.  The interaction of electrical activity among neurons of lobster cardiac ganglion. , 1958, The Japanese journal of physiology.

[29]  D. E. Goldman POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES , 1943, The Journal of general physiology.

[30]  K Tazaki,et al.  Neuronal mechanisms underlying rhythmic bursts in crustacean cardiac ganglia. , 1983, Symposia of the Society for Experimental Biology.

[31]  I. Cooke,et al.  6 – Hormones and Neurosecretion , 1982 .

[32]  J. F. Miranda,et al.  The Pharmacon-Receptor-Effector Concept , 1979 .

[33]  A. Resmini The conduction of the cardiac impulse : P. F. Cranefeld, Futura Publ. Co., Mount Kisko, N.Y. (1975), 404 pp., $ 27.50. , 1977 .

[34]  T. Tameyasu Intracellular potentials in the small cells and cellular interaction in the cardiac ganglion of the lobster Panulirus japonicus. , 1976, Comparative biochemistry and physiology. A, Comparative physiology.

[35]  S. Hagiwara,et al.  Nervous activities of the heart in Crustacea. , 1961, Ergebnisse der Biologie.

[36]  S. W. Kuffler,et al.  A peptide as a possible transmitter in sympathetic ganglia of the frog , 2022 .