Differing shapes of 1α,25-dihydroxyvitamin D3 function as ligands for the D-binding protein, nuclear receptor and membrane receptor: A status report

[1]  R. Bouillon,et al.  Structure-function relationships in the vitamin D endocrine system. , 1995, Endocrine reviews.

[2]  M. B. Kelly,et al.  Direct Activation of Protein Kinase C by 1α,25-Dihydroxyvitamin D3(*) , 1995, The Journal of Biological Chemistry.

[3]  R. Taussig,et al.  Mammalian Membrane-bound Adenylyl Cyclases (*) , 1995, The Journal of Biological Chemistry.

[4]  M. Holick,et al.  Binding characteristics of a membrane receptor that recognizes 1α25‐dihydroxyvitamin D3 and its epimer, 1β,25‐dihydroxyvitamin D3 , 1994 .

[5]  A. Norman,et al.  Identification of a specific binding protein for 1 alpha,25-dihydroxyvitamin D3 in basal-lateral membranes of chick intestinal epithelium and relationship to transcaltachia. , 1994, The Journal of biological chemistry.

[6]  M. Bissonnette,et al.  1,25(OH)2 vitamin D3 activates PKC-alpha in Caco-2 cells: a mechanism to limit secosteroid-induced rise in [Ca2+]i. , 1994, The American journal of physiology.

[7]  A. Norman,et al.  Profile of ligand specificity of the vitamin D binding protein for 1α,25‐dihydroxyvitamin d3 and its analogs , 1994, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[8]  R. Wali,et al.  The role of protein kinase-C alpha in the activation of particulate guanylate cyclase by 1 alpha,25-dihydroxyvitamin D3 in CaCo-2 cells. , 1994, Endocrinology.

[9]  A. Norman,et al.  Nonnuclear effects of the steroid hormone 1 alpha,25(OH)2-vitamin D3: analogs are able to functionally differentiate between nuclear and membrane receptors. , 1994, Biochemical and biophysical research communications.

[10]  R. Bouillon,et al.  Vitamin D, a pluripotent steroid hormone: structural studies, molecular endocrinology and clinical applications , 1994 .

[11]  R. Bouillon,et al.  Demonstration that 1 beta,25-dihydroxyvitamin D3 is an antagonist of the nongenomic but not genomic biological responses and biological profile of the three A-ring diastereomers of 1 alpha,25-dihydroxyvitamin D3. , 1993, The Journal of biological chemistry.

[12]  W. Okamura,et al.  Effect of C2O stereochemistry on the conformational profile of the side chains of vitamin D analogs. , 1993 .

[13]  R. Bouillon,et al.  Structure-function studies of 1,25-dihydroxyvitamin D3 and the vitamin D endocrine system. 1,25-dihydroxy-pentadeuterio-previtamin D3 (as a 6-s-cis analog) stimulates nongenomic but not genomic biological responses. , 1993, The Journal of biological chemistry.

[14]  A. Norman,et al.  The role of the vitamin D endocrine system in avian bone biology. , 1993, The Journal of nutrition.

[15]  F. Coe,et al.  Disorders of bone and mineral metabolism , 1992 .

[16]  J. Palenzuela,et al.  Vitamin D: Structure‐function analyses and the design of analogs , 1992, Journal of cellular biochemistry.

[17]  A. Norman,et al.  1,25‐Dihydroxyvitamin D3 analog structure‐function assessment of the rapid stimulation of intestinal calcium absorption (transcaltachia) , 1992, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[18]  A. C. Maiyar,et al.  1,25(OH)2-vitamin D3, a steroid hormone that produces biologic effects via both genomic and nongenomic pathways , 1992, The Journal of Steroid Biochemistry and Molecular Biology.

[19]  A. C. Maiyar,et al.  Vitamin D-mediated gene expression. , 1992, Critical reviews in eukaryotic gene expression.

[20]  G. Stein,et al.  1α,25‐Dihydroxyvitamin D3 rapidly increases cytosolic calcium in clonal rat osteosarcoma cells lacking the vitamin D Receptor , 1991 .

[21]  A. Norman,et al.  Nongenomic actions of 1,25-dihydroxyvitamin D3 in rat osteosarcoma cells: structure-function studies using ligand analogs. , 1991, Endocrinology.

[22]  A. R. Boland,et al.  Influx of extracellular calcium mediates 1,25-dihydroxyvitamin D3-dependent transcaltachia (the rapid stimulation of duodenal Ca2+ transport). , 1990, Endocrinology.

[23]  M. Holick,et al.  1α,25‐dihydroxyvitamin D3‐induced increments in hepatocyte cytosolic calcium and lysophosphatidylinositol: Inhibition by pertussis toxin and 1ß,25‐dihydroxyvitamin D3 , 1990 .

[24]  A. R. de Boland,et al.  Ca2(+)-channel agonist BAY K8644 mimics 1,25(OH)2-vitamin D3 rapid enhancement of Ca2+ transport in chick perfused duodenum. , 1990, Biochemical and biophysical research communications.

[25]  M. Holick,et al.  Rapid actions of 1α,25‐dihydroxyvitamin D3 on Ca2+ and phospholipids in isolated rat liver nuclei , 1989, FEBS letters.

[26]  M. Farach-Carson,et al.  Vitamin D3 metabolites modulate dihydropyridine-sensitive calcium currents in clonal rat osteosarcoma cells. , 1989, The Journal of biological chemistry.

[27]  H. Koeffler,et al.  The role of the vitamin D endocrine system in health and disease. , 1989, The New England journal of medicine.

[28]  A. Norman,et al.  1,25(OH)2‐Vitamin D3 receptors: gene regulation and genetic circuitry , 1988, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[29]  A. Norman,et al.  1,25-Dihydroxyvitamin D3-mediated intestinal calcium transport. Biochemical identification of lysosomes containing calcium and calcium-binding protein (calbindin-D28K). , 1986, The Journal of biological chemistry.

[30]  Y. Yoshimoto,et al.  Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1,25-dihydroxyvitamin D3. , 1984, Endocrinology.

[31]  L. Orci,et al.  The vitamin D endocrine system: steroid metabolism, hormone receptors, and biological response (calcium binding proteins). , 1982, Endocrine reviews.

[32]  H. DeLuca Metabolism of Vitamin D , 1979 .

[33]  S. Sine,et al.  Vitamin D in Solution: Conformations of Vitamin D3, α,25-Dihydroxyvitamin D3, and Dihydrotachysterol3 , 1974, Science.