Design rules for net absorption enhancement in pseudo-disordered photonic crystal for thin film solar cells.

The role of pseudo-disordered photonic crystals on the absorption efficiency of simplified thin film crystalline silicon solar cells is presented and discussed. The expected short circuit current can thus be further increased compared to a fully optimized square lattice of holes, thanks to carefully controlled positions of the nanoholes in the considered realistic simplified solar cell stack. In addition, the pseudo-disordered structures are less sensitive to the angle of incidence, especially in the long wavelength range.

[1]  Albert Polman,et al.  Optimized Scattering Power Spectral Density of Photovoltaic Light-Trapping Patterns , 2015 .

[2]  Jozef Poortmans,et al.  Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography , 2012 .

[3]  Shanhui Fan,et al.  Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells , 2013, Nature Communications.

[4]  D. Wiersma,et al.  Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption. , 2012, Optics express.

[5]  Jianying Zhou,et al.  Deterministic quasi-random nanostructures for photon control , 2013, Nature Communications.

[6]  Thin films with disordered nanohole patterns for solar radiation absorbers , 2015 .

[7]  Emmanuel Drouard,et al.  Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells. , 2012, Optics express.

[8]  S. Noda,et al.  Experimental Demonstration of Quasi-resonant Absorption in Silicon Thin Films for Enhanced Solar Light Trapping , 2013, 1311.5410.

[9]  D. Wiersma,et al.  Photon management in two-dimensional disordered media , 2012, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[10]  D. Wiersma,et al.  Disordered photonic structures for light harvesting in solar cells. , 2013, Optics express.

[11]  Peter Bermel,et al.  Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector , 2008 .

[12]  T. Gaylord,et al.  Rigorous coupled-wave analysis of planar-grating diffraction , 1981 .

[13]  Lucio Claudio Andreani,et al.  Broadband light trapping with disordered photonic structures in thin‐film silicon solar cells , 2014 .

[14]  Zongfu Yu,et al.  Fundamental limit of light trapping in grating structures. , 2010, Optics express.

[15]  Dietmar Knipp,et al.  Analyzing periodic and random textured silicon thin film solar cells by Rigorous Coupled Wave Analysis , 2014, Scientific Reports.

[16]  Emmanuel Drouard,et al.  Combined front and back diffraction gratings for broad band light trapping in thin film solar cell. , 2012, Optics express.

[17]  Lucio Claudio Andreani,et al.  Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns. , 2012, Optics express.

[18]  Jia Liu,et al.  Binary coded patterns for photon control using necklace problem concept. , 2016, Optics express.

[19]  Emmanuel Drouard,et al.  Micrometer-Thin Crystalline-Silicon Solar Cells Integrating Numerically Optimized 2-D Photonic Crystals , 2014, IEEE Journal of Photovoltaics.

[20]  James Loomis,et al.  15.7% Efficient 10‐μm‐Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures , 2015, Advanced materials.

[21]  M. Meier,et al.  Disorder improves nanophotonic light trapping in thin-film solar cells , 2014 .

[22]  Franziska Back,et al.  Quasicrystalline-structured light harvesting nanophotonic silicon films on nanoimprinted glass for ultra-thin photovoltaics , 2014 .

[23]  Ching Eng Png,et al.  Photonic quasicrystal nanopatterned silicon thin film for photovoltaic applications , 2015 .

[24]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[25]  J. Llorens,et al.  Optical absorption enhancement by photonic quasicrystals in thin films for photovoltaic applications , 2013, 2013 15th International Conference on Transparent Optical Networks (ICTON).

[26]  Emmanuel Drouard,et al.  Absorption control in pseudodisordered photonic-crystal thin films , 2013 .

[27]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[28]  E. Drouard,et al.  Photonic crystals and optical mode engineering for thin film photovoltaics. , 2013, Optics express.

[29]  Christopher Reardon,et al.  Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique. , 2013, Optics express.

[30]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[31]  Xiao Wei Sun,et al.  Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications. , 2011, Optics letters.

[32]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[33]  S. Noda,et al.  Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics , 2012, 1203.0363.

[34]  James G. Mutitu,et al.  Thin film solar cell design based on photonic crystal and diffractive grating structures. , 2008, Optics express.

[35]  D. Wiersma,et al.  Complex Photonic Structures for Light Harvesting , 2015, Advanced optical materials.

[36]  Luis Javier Martínez,et al.  Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells. , 2013, Optics express.

[37]  Tandem photonic-crystal thin films surpassing lambertian light-trapping limit , 2013, CLEO 2013.

[38]  Craig M. Herzinger,et al.  Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation , 1998 .