Network Motif Discovery Using Subgraph Enumeration and Symmetry-Breaking

The study of biological networks and network motifs can yield significant new insights into systems biology. Previous methods of discovering network motifs - network-centric subgraph enumeration and sampling - have been limited to motifs of 6 to 8 nodes, revealing only the smallest network components. New methods are necessary to identify larger network sub-structures and functional motifs. Here we present a novel algorithm for discovering large network motifs that achieves these goals, based on a novel symmetry-breaking technique, which eliminates repeated isomorphism testing, leading to an exponential speed-up over previous methods. This technique is made possible by reversing the traditional network-based search at the heart of the algorithm to a motif-based search, which also eliminates the need to store all motifs of a given size and enables parallelization and scaling. Additionally, our method enables us to study the clustering properties of discovered motifs, revealing even larger network elements. We apply this algorithm to the protein-protein interaction network and transcription regulatory network of S. cerevisiae, and discover several large network motifs, which were previously inaccessible to existing methods, including a 29-node cluster of 15-node motifs corresponding to the key transcription machinery of S. cerevisiae.

[1]  C. Wilke,et al.  A single determinant dominates the rate of yeast protein evolution. , 2006, Molecular biology and evolution.

[2]  Lamellocitáira Jellemz,et al.  Drosophila Melanogaster , 1944, Nature.

[3]  Nancy F. Hansen,et al.  Comparative analyses of multi-species sequences from targeted genomic regions , 2003, Nature.

[4]  B. Snel,et al.  Toward Automatic Reconstruction of a Highly Resolved Tree of Life , 2006, Science.

[5]  S. Mangan,et al.  The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. , 2003, Journal of molecular biology.

[6]  M. W. Young,et al.  Differing levels of dispersed repetitive DNA among closely related species of Drosophila. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Douglas O. Clary,et al.  The mitochondrial DNA molecule ofDrosophila yakuba: Nucleotide sequence, gene organization, and genetic code , 2005, Journal of Molecular Evolution.

[8]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[9]  Colin N. Dewey,et al.  Population Genomics: Whole-Genome Analysis of Polymorphism and Divergence in Drosophila simulans , 2007, PLoS biology.

[10]  C. Samakovlis,et al.  Translational readthrough in the hdc mRNA generates a novel branching inhibitor in the drosophila trachea. , 1998, Genes & development.

[11]  A. Eyre-Walker,et al.  The genomic rate of adaptive amino acid substitution in Drosophila. , 2004, Molecular biology and evolution.

[12]  Dimitris Thanos,et al.  Ordered Recruitment of Chromatin Modifying and General Transcription Factors to the IFN-β Promoter , 2000, Cell.

[13]  D. Higgins,et al.  T-Coffee: A novel method for fast and accurate multiple sequence alignment. , 2000, Journal of molecular biology.

[14]  C. Helvig,et al.  The cytochrome P450 gene superfamily in Drosophila melanogaster: annotation, intron-exon organization and phylogeny. , 2001, Gene.

[15]  R. Plasterk,et al.  Micro RNAs in Animal Development , 2006, Cell.

[16]  M. Tompa Identifying functional elements by comparative DNA sequence analysis. , 2001, Genome research.

[17]  Nicholas H. Barton,et al.  The Relative Rates of Evolution of Sex Chromosomes and Autosomes , 1987, The American Naturalist.

[18]  F J Ayala,et al.  Evidence for a high ancestral GC content in Drosophila. , 2000, Molecular biology and evolution.

[19]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[20]  Nir Friedman,et al.  Towards an Integrated Protein-Protein Interaction Network: A Relational Markov Network Approach , 2006, J. Comput. Biol..

[21]  G. Rubin,et al.  A Drosophila full-length cDNA resource , 2002, Genome Biology.

[22]  G. Rubin,et al.  The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. , 1999, Genetics.

[23]  F. Hannan,et al.  The stoned locus of Drosophila melanogaster produces a dicistronic transcript and encodes two distinct polypeptides. , 1996, Genetics.

[24]  Xinxian Deng,et al.  Non-coding RNA in fly dosage compensation. , 2006, Trends in biochemical sciences.

[25]  Teresa M. Przytycka,et al.  An Important Connection Between Network Motifs and Parsimony Models , 2006, RECOMB.

[26]  A. Shilatifard,et al.  Control of elongation by RNA polymerase II. , 2000, Trends in biochemical sciences.

[27]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[28]  G. Weinstock,et al.  Creating a honey bee consensus gene set , 2007, Genome Biology.

[29]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[30]  Jan Larsson,et al.  Dosage compensation, the origin and the afterlife of sex chromosomes , 2006, Chromosome Research.

[31]  Francisco J. Ayala,et al.  Fluctuating Mutation Bias and the Evolution of Base Composition in Drosophila , 2000, Journal of Molecular Evolution.

[32]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[33]  M. Levine,et al.  Spatial regulation of the gap gene giant during Drosophila development. , 1991, Development.

[34]  R. Young,et al.  Transcription of eukaryotic protein-coding genes. , 2000, Annual review of genetics.

[35]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[36]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[37]  Inna Dubchak,et al.  Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. , 2005, Genome research.

[38]  Vadim N. Gladyshev,et al.  How Selenium Has Altered Our Understanding of the Genetic Code , 2002, Molecular and Cellular Biology.

[39]  S. Pietrokovski Searching databases of conserved sequence regions by aligning protein multiple-alignments. , 1996, Nucleic acids research.

[40]  C. McBride,et al.  Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia , 2007, Proceedings of the National Academy of Sciences.

[41]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[42]  C. Wilke,et al.  Why highly expressed proteins evolve slowly. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  S H Huang,et al.  Inverse polymerase chain reaction , 1994, Molecular biotechnology.

[44]  William Stafford Noble,et al.  Assessing computational tools for the discovery of transcription factor binding sites , 2005, Nature Biotechnology.

[45]  C. Aquadro,et al.  Mitochondrial DNA differentiation during the speciation process in Peromyscus. , 1983, Molecular biology and evolution.

[46]  Wyeth W. Wasserman,et al.  JASPAR: an open-access database for eukaryotic transcription factor binding profiles , 2004, Nucleic Acids Res..

[47]  Vladimir Gvozdev,et al.  A Distinct Small RNA Pathway Silences Selfish Genetic Elements in the Germline , 2006, Science.

[48]  M. Kreitman,et al.  Functional Evolution of a cis-Regulatory Module , 2005, PLoS biology.

[49]  C. Burge,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005, Science.

[50]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[51]  E. Ziv,et al.  Inferring network mechanisms: the Drosophila melanogaster protein interaction network. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  B. Lemaître,et al.  The host defense of Drosophila melanogaster. , 2007, Annual review of immunology.

[53]  Robert C. Edgar,et al.  Improved repeat identification and masking in Dipterans. , 2007, Gene.

[54]  M. Berenbaum,et al.  A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee , 2006, Insect molecular biology.

[55]  M. Levine,et al.  An anteroposterior Dorsal gradient in the Drosophila embryo. , 1997, Genes & development.

[56]  Paul R Copeland,et al.  Regulation of gene expression by stop codon recoding: selenocysteine. , 2003, Gene.

[57]  D. Robinson,et al.  Comparison of phylogenetic trees , 1981 .

[58]  Mario Cáceres,et al.  A new split of the Hox gene complex in Drosophila: relocation and evolution of the gene labial. , 2003, Molecular biology and evolution.

[59]  Maya Paczuski,et al.  Subgraph ensembles and motif discovery using an alternative heuristic for graph isomorphism. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  Stein Aerts,et al.  Fine-Tuning Enhancer Models to Predict Transcriptional Targets across Multiple Genomes , 2007, PloS one.

[61]  J. Casey,et al.  Hepatitis D virus RNA editing: specific modification of adenosine in the antigenomic RNA , 1995, Journal of virology.

[62]  Gary D. Stormo,et al.  DNA binding sites: representation and discovery , 2000, Bioinform..

[63]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[64]  Gilean McVean,et al.  A population genetic model for the evolution of synonymous codon usage: patterns and predictions , 1999 .

[65]  D. Petrov,et al.  Minor shift in background substitutional patterns in the Drosophila saltans and willistoni lineages is insufficient to explain GC content of coding sequences. , 2006, BMC biology.

[66]  J. Posakony,et al.  Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. , 1995, Genes & development.

[67]  Jorge Vieira,et al.  The Evolution of Codon Preferences in Drosophila: A Maximum-Likelihood Approach to Parameter Estimation and Hypothesis Testing , 1999, Journal of Molecular Evolution.

[68]  E. Birney,et al.  Comparative genomics: genome-wide analysis in metazoan eukaryotes , 2003, Nature Reviews Genetics.

[69]  U. Alon,et al.  Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[70]  H. Lipkin Where is the ?c? , 1978 .

[71]  Ryutaro Murakami,et al.  An endoderm-specific GATA factor gene, dGATAe, is required for the terminal differentiation of the Drosophila endoderm. , 2005, Developmental biology.

[72]  U. Alon,et al.  Just-in-time transcription program in metabolic pathways , 2004, Nature Genetics.

[73]  Yan Li,et al.  MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. , 2006, Genes & development.

[74]  John Parsch,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila , 2007 .

[75]  B. Negre,et al.  HOM-C evolution in Drosophila: is there a need for Hox gene clustering? , 2007, Trends in genetics : TIG.

[76]  N. Rajewsky microRNA target predictions in animals , 2006, Nature Genetics.

[77]  Julian R. Ullmann,et al.  An Algorithm for Subgraph Isomorphism , 1976, J. ACM.

[78]  G. Moore,et al.  Fitting the gene lineage into its species lineage , 1979 .

[79]  Hugo J. Bellen,et al.  P[acman]: A BAC Transgenic Platform for Targeted Insertion of Large DNA Fragments in D. melanogaster , 2006, Science.

[80]  Laurent Lestrade,et al.  snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs , 2005, Nucleic Acids Res..

[81]  M. Groudine,et al.  The block to transcriptional elongation within the human c-myc gene is determined in the promoter-proximal region. , 1992, Genes & development.

[82]  Sonja J. Prohaska,et al.  Evolutionary patterns of non-coding RNAs , 2005, Theory in Biosciences.

[83]  M. Hubisz,et al.  Maximum likelihood estimation of ancestral codon usage bias parameters in Drosophila. , 2006, Molecular biology and evolution.

[84]  J. Posakony,et al.  Negative regulation of proneural gene activity: hairy is a direct transcriptional repressor of achaete. , 1994, Genes & development.

[85]  Sarah C. R. Elgin,et al.  The dot chromosome of Drosophila: Insights into chromatin states and their change over evolutionary time , 2006, Chromosome Research.

[86]  G M Rubin,et al.  A Drosophila complementary DNA resource. , 2000, Science.

[87]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[88]  J. Taylor,et al.  A specific base transition occurs on replicating hepatitis delta virus RNA , 1990, Journal of virology.

[89]  D. Hartl,et al.  The evolution of the novel Sdic gene cluster in Drosophila melanogaster. , 2006, Gene.

[90]  Jian Wang,et al.  ReAS: Recovery of Ancestral Sequences for Transposable Elements from the Unassembled Reads of a Whole Genome Shotgun , 2005, PLoS Comput. Biol..

[91]  Peter W. Markstein,et al.  A regulatory code for neurogenic gene expression in the Drosophila embryo , 2004, Development.

[92]  Mira V. Han,et al.  Gene Family Evolution across 12 Drosophila Genomes , 2007, PLoS genetics.

[93]  W. Kuehl,et al.  Differential expression of c-myb mRNA in murine B lymphomas by a block to transcription elongation. , 1987, Science.

[94]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[95]  Christopher M. Player,et al.  Large-Scale Sequencing Reveals 21U-RNAs and Additional MicroRNAs and Endogenous siRNAs in C. elegans , 2006, Cell.

[96]  Vadim N. Gladyshev,et al.  SELENOPROTEINS, SELENOPROTEIN mRNA EXPRESSION, FERTILITY, AND MORTALITY* , 2001 .

[97]  Daniel St Johnston,et al.  The art and design of genetic screens: Drosophila melanogaster , 2002, Nature Reviews Genetics.

[98]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[99]  Benedict Paten,et al.  The discovery, positioning and verification of a set of transcription-associated motifs in vertebrates , 2005, Genome Biology.

[100]  E. Lai,et al.  The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila , 2007, Cell.

[101]  Olivier Elemento,et al.  Revealing Posttranscriptional Regulatory Elements Through Network-Level Conservation , 2005, PLoS Comput. Biol..

[102]  H. Akashi,et al.  Translational selection and molecular evolution. , 1998, Current opinion in genetics & development.

[103]  Hervé Seitz,et al.  Rethinking the Microprocessor , 2006, Cell.

[104]  B. Dickson,et al.  A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila , 2007, Nature.

[105]  W. Wong,et al.  CisModule: de novo discovery of cis-regulatory modules by hierarchical mixture modeling. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[106]  E. Lai Predicting and validating microRNA targets , 2004, Genome Biology.

[107]  Mouse Genome Sequencing Consortium Initial sequencing and comparative analysis of the mouse genome , 2002, Nature.

[108]  M Vingron,et al.  An integrated gene annotation and transcriptional profiling approach towards the full gene content of the Drosophila genome , 2003, Genome Biology.

[109]  Raymond F. Gesteland,et al.  The Drosophila Gene for Antizyme Requires Ribosomal Frameshifting for Expression and Contains an Intronic Gene for snRNP Sm D3 on the Opposite Strand , 1998, Molecular and Cellular Biology.

[110]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[111]  F J Ayala,et al.  Switch in codon bias and increased rates of amino acid substitution in the Drosophila saltans species group. , 1999, Genetics.

[112]  J. Ballard,et al.  When one is not enough: introgression of mitochondrial DNA in Drosophila. , 2000, Molecular biology and evolution.

[113]  R. Amann,et al.  Predictive Identification of Exonic Splicing Enhancers in Human Genes , 2022 .

[114]  Ewan Birney,et al.  Automated generation of heuristics for biological sequence comparison , 2005, BMC Bioinformatics.

[115]  S. Kasif,et al.  Human-mouse gene identification by comparative evidence integration and evolutionary analysis. , 2003, Genome research.

[116]  Justin C. Fay,et al.  DNA Variability and Divergence at the Notch Locus in Drosophila melanogaster and D. simulans: A Case of Accelerated Synonymous Site Divergence , 2004, Genetics.

[117]  H. Akashi,et al.  Molecular evolution between Drosophila melanogaster and D. simulans: reduced codon bias, faster rates of amino acid substitution, and larger proteins in D. melanogaster. , 1996, Genetics.

[118]  A. Hatzigeorgiou,et al.  TarBase: A comprehensive database of experimentally supported animal microRNA targets. , 2005, RNA.

[119]  J. Lis,et al.  RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. , 1986, Molecular and cellular biology.

[120]  Peter W. Markstein,et al.  Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[121]  A. Civetta,et al.  Shall we dance or shall we fight? Using DNA sequence data to untangle controversies surrounding sexual selection. , 2003, Genome.

[122]  M E Greenberg,et al.  The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation , 1995, Molecular and cellular biology.

[123]  C. Pál,et al.  Highly expressed genes in yeast evolve slowly. , 2001, Genetics.

[124]  G. Rubin,et al.  Computational identification of Drosophila microRNA genes , 2003, Genome Biology.

[125]  Marek S. Skrzypek,et al.  YPDTM, PombePDTM and WormPDTM: model organism volumes of the BioKnowledgeTM Library, an integrated resource for protein information , 2001, Nucleic Acids Res..

[126]  E. Lai,et al.  The Bearded box, a novel 3' UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. , 1997, Development.

[127]  M. Bulmer The selection-mutation-drift theory of synonymous codon usage. , 1991, Genetics.

[128]  E. Lewis A gene complex controlling segmentation in Drosophila , 1978, Nature.

[129]  Long Li,et al.  REDfly: a Regulatory Element Database for Drosophila , 2006, Bioinform..

[130]  D. Bartel,et al.  Intronic microRNA precursors that bypass Drosha processing , 2007, Nature.

[131]  S. Eddy Non–coding RNA genes and the modern RNA world , 2001, Nature Reviews Genetics.

[132]  Temple F. Smith,et al.  Techniques for multi-genome synteny analysis to overcome assembly limitations. , 2006, Genome informatics. International Conference on Genome Informatics.

[133]  Andrew Fire,et al.  The rde-1 Gene, RNA Interference, and Transposon Silencing in C. elegans , 1999, Cell.

[134]  R. Guigó,et al.  Characterization of Mammalian Selenoproteomes , 2003, Science.

[135]  Janet Hemingway,et al.  Evolution of Supergene Families Associated with Insecticide Resistance , 2002, Science.

[136]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[137]  Matthew W. Hahn,et al.  The evolution of transcriptional regulation in eukaryotes. , 2003, Molecular biology and evolution.

[138]  K. White,et al.  Patterns of Gene Expression During Drosophila Mesoderm Development , 2001, Science.

[139]  R. Reenan,et al.  Nervous System Targets of RNA Editing Identified by Comparative Genomics , 2003, Science.

[140]  M. Mathews,et al.  HIV-1 Tat overcomes inefficient transcriptional elongation in vitro. , 1993, Journal of molecular biology.

[141]  Carlos D. Bustamante,et al.  Bayesian Analysis Suggests that Most Amino Acid Replacements in Drosophila Are Driven by Positive Selection , 2003, Journal of Molecular Evolution.

[142]  Kristin C. Gunsalus,et al.  microRNA Target Predictions across Seven Drosophila Species and Comparison to Mammalian Targets , 2005, PLoS Comput. Biol..

[143]  J. Lis,et al.  Protein traffic on the heat shock promoter: Parking, stalling, and trucking along , 1993, Cell.

[144]  G. Rubin,et al.  Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[145]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[146]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[147]  John T. Lis,et al.  Breaking barriers to transcription elongation , 2006, Nature Reviews Molecular Cell Biology.

[148]  N. Goldman,et al.  Codon-substitution models for heterogeneous selection pressure at amino acid sites. , 2000, Genetics.

[149]  Adam Eyre-Walker,et al.  Adaptive protein evolution in Drosophila , 2002, Nature.

[150]  J. L. Boulay,et al.  The Drosophila developmental gene snail encodes a protein with nucleic acid binding fingers , 1987, Nature.

[151]  Lior Pachter,et al.  Reference based annotation with GeneMapper , 2006, Genome Biology.

[152]  D. Haussler,et al.  Article Identification and Characterization of Multi-Species Conserved Sequences , 2022 .

[153]  Casey M. Bergman,et al.  Drosophila DNase I footprint database: a systematic genome annotation of transcription factor binding sites in the fruitfly, Drosophila melanogaster , 2005, Bioinform..

[154]  H. Okano,et al.  Translational repression determines a neuronal potential in Drosophila asymmetric cell division , 2001, Nature.

[155]  Mitzi I. Kuroda,et al.  Epigenetic Aspects of X-Chromosome Dosage Compensation , 2001, Science.

[156]  Brian Charlesworth,et al.  Genetic linkage and molecular evolution , 2001, Current Biology.

[157]  Adam Eyre-Walker,et al.  Mutation pressure, natural selection, and the evolution of base composition in Drosophila , 2004, Genetica.

[158]  H. Akashi,et al.  Inferring weak selection from patterns of polymorphism and divergence at "silent" sites in Drosophila DNA. , 1995, Genetics.

[159]  Michael Ashburner,et al.  Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome , 2006, Genome Biology.

[160]  Y. Pekarsky,et al.  Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. , 2006, Cancer research.

[161]  Kazutoyo Osoegawa,et al.  TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres. , 2004, Molecular biology and evolution.

[162]  S. Eddy Computational Genomics of Noncoding RNA Genes , 2002, Cell.

[163]  M. Nei,et al.  Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection , 1988, Nature.

[164]  Jon D. McAuliffe,et al.  Phylogenetic Shadowing of Primate Sequences to Find Functional Regions of the Human Genome , 2003, Science.

[165]  Ziheng Yang,et al.  Statistical methods for detecting molecular adaptation , 2000, Trends in Ecology & Evolution.

[166]  Dmitri A Petrov,et al.  Genomic Heterogeneity of Background Substitutional Patterns in Drosophila melanogaster , 2005, Genetics.

[167]  Mark Gerstein,et al.  Identification of pseudogenes in the Drosophila melanogaster genome. , 2003, Nucleic acids research.

[168]  M. Springer,et al.  Escherichia coli ribosomal protein L20 binds as a single monomer to its own mRNA bearing two potential binding sites , 2007, Nucleic acids research.

[169]  Xin Li,et al.  A microRNA Mediates EGF Receptor Signaling and Promotes Photoreceptor Differentiation in the Drosophila Eye , 2005, Cell.

[170]  J. Powell,et al.  Evolution of the Adh locus in the Drosophila willistoni group: the loss of an intron, and shift in codon usage. , 1993, Molecular biology and evolution.

[171]  Eugene W. Myers,et al.  PILER: identification and classification of genomic repeats , 2005, ISMB.

[172]  D. Penny,et al.  The modern molecular clock , 2003, Nature Reviews Genetics.

[173]  Wiel H. Janssen,et al.  Evaluation studies , 1993, Generic Intelligent Driver Support.

[174]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[175]  S. Eddy A Model of the Statistical Power of Comparative Genome Sequence Analysis , 2005, PLoS biology.

[176]  M. J. Simmons,et al.  Telomeric P elements associated with cytotype regulation of the P transposon family in Drosophila melanogaster. , 2002, Genetics.

[177]  Emmanouil T Dermitzakis,et al.  Functional variation and evolution of non-coding DNA. , 2006, Current opinion in genetics & development.

[178]  Michael Ashburner,et al.  Principles of Genome Evolution in the Drosophila melanogaster Species Group , 2007, PLoS biology.

[179]  Jürgen Brosius,et al.  Identification of an evolutionarily divergent U11 small nuclear ribonucleoprotein particle in Drosophila. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[180]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[181]  W. Stephan The rate of compensatory evolution. , 1996, Genetics.

[182]  M. Tuite,et al.  Regulated translational bypass of stop codons in yeast. , 2007, Trends in microbiology.

[183]  B. Patterson,et al.  Letter to the editor. , 2018, Journal of professional nursing : official journal of the American Association of Colleges of Nursing.

[184]  William Ritchie,et al.  RNA stem-loops: to be or not to be cleaved by RNAse III. , 2007, RNA.

[185]  Doron Lancet,et al.  Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification , 2005, Bioinform..

[186]  A. J. Schroeder,et al.  Revisiting the protein-coding gene catalog of Drosophila melanogaster using 12 fly genomes. , 2007, Genome research.

[187]  Etsuko N. Moriyama,et al.  Analysis of a Shift in Codon Usage in Drosophila , 2003, Journal of Molecular Evolution.

[188]  J. Roman Arguello,et al.  Origination of an X-Linked Testes Chimeric Gene by Illegitimate Recombination in Drosophila , 2006, PLoS genetics.

[189]  Ian Korf,et al.  Gene finding in novel genomes , 2004, BMC Bioinformatics.

[190]  Anthony A. Philippakis,et al.  Expression-Guided In Silico Evaluation of Candidate Cis Regulatory Codes for Drosophila Muscle Founder Cells , 2006, PLoS Comput. Biol..

[191]  Michael Ashburner,et al.  Annotation of the Drosophila melanogaster euchromatic genome: a systematic review , 2002, Genome Biology.

[192]  C. Burge,et al.  Vertebrate MicroRNA Genes , 2003, Science.

[193]  Kevin Struhl,et al.  The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting. , 2006, Molecular cell.

[194]  Deborah J. Andrew,et al.  CrebA regulates secretory activity in the Drosophila salivary gland and epidermis , 2005, Development.

[195]  M. Ashburner,et al.  Systematic determination of patterns of gene expression during Drosophila embryogenesis , 2002, Genome Biology.

[196]  Michael P. Eichenlaub,et al.  A temporal map of transcription factor activity: mef2 directly regulates target genes at all stages of muscle development. , 2006, Developmental cell.

[197]  W. Doolittle,et al.  A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.

[198]  A. E. Hirsh,et al.  Functional genomic analysis of the rates of protein evolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[199]  E. Lewis,et al.  Splits in fruitfly Hox gene complexes , 1996, Nature.

[200]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[201]  D. Eick,et al.  Hold back of RNA polymerase II at the transcription start site mediates down‐regulation of c‐myc in vivo. , 1992, The EMBO journal.

[202]  Megan F. Cole,et al.  Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells , 2005, Cell.

[203]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[204]  Stijn van Dongen,et al.  miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..

[205]  R. Guigó,et al.  In silico identification of novel selenoproteins in the Drosophila melanogaster genome , 2001, EMBO reports.

[206]  A. Civetta,et al.  High divergence of reproductive tract proteins and their association with postzygotic reproductive isolation in Drosophila melanogaster and Drosophila virilis group species , 1995, Journal of Molecular Evolution.

[207]  Uri Alon,et al.  Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs , 2004, Bioinform..

[208]  John D. Storey A direct approach to false discovery rates , 2002 .

[209]  M. Ptashne,et al.  Transcriptional activation by recruitment , 1997, Nature.

[210]  M. Levine,et al.  Genomic regulatory networks and animal development. , 2005, Developmental cell.

[211]  D. Begun,et al.  The frequency distribution of nucleotide variation in Drosophila simulans. , 2001, Molecular biology and evolution.

[212]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[213]  E. Furlong Integrating transcriptional and signalling networks during muscle development. , 2004, Current opinion in genetics & development.

[214]  S. Mishra,et al.  Unique folding of precursor microRNAs: quantitative evidence and implications for de novo identification. , 2006, RNA.

[215]  Joseph W. Carlson,et al.  Rapid and efficient cDNA library screening by self-ligation of inverse PCR products (SLIP) , 2005, Nucleic acids research.

[216]  Matthew W. Hahn,et al.  Estimating the tempo and mode of gene family evolution from comparative genomic data. , 2005, Genome research.

[217]  Hsiao-Pei Yang,et al.  Genomewide Comparative Analysis of the Highly Abundant Transposable Element DINE-1 Suggests a Recent Transpositional Burst in Drosophila yakuba , 2006, Genetics.

[218]  S. Salzberg,et al.  Serendipitous discovery of Wolbachia genomes in multiple Drosophila species , 2005, Genome Biology.

[219]  S. Schaeffer,et al.  Natural selection and the frequency distributions of "silent" DNA polymorphism in Drosophila. , 1997, Genetics.

[220]  U. Alon,et al.  Ordering Genes in a Flagella Pathway by Analysis of Expression Kinetics from Living Bacteria , 2001, Science.

[221]  E. Furlong,et al.  A core transcriptional network for early mesoderm development in Drosophila melanogaster. , 2007, Genes & development.

[222]  Megan F. Cole,et al.  Control of Developmental Regulators by Polycomb in Human Embryonic Stem Cells , 2006, Cell.

[223]  Temple F. Smith,et al.  Prediction of gene structure. , 1992, Journal of molecular biology.

[224]  Andrew D Kern,et al.  Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[225]  Eduardo P C Rocha,et al.  The quest for the universals of protein evolution. , 2006, Trends in genetics : TIG.

[226]  J Wilder,et al.  Mobile elements and the genesis of microsatellites in dipterans. , 2001, Molecular biology and evolution.

[227]  Piyush Goel,et al.  Molecular Evolution in the Drosophila melanogaster Species Subgroup: Frequent Parameter Fluctuations on the Timescale of Molecular Divergence , 2006, Genetics.

[228]  E. Myers,et al.  Finishing a whole-genome shotgun: Release 3 of the Drosophila melanogaster euchromatic genome sequence , 2002, Genome Biology.

[229]  Uri Alon,et al.  Topological generalizations of network motifs. Phys Rev E 70:031909 , 2004 .

[230]  Daniel Herschlag,et al.  Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[231]  G M Rubin,et al.  A brief history of Drosophila's contributions to genome research. , 2000, Science.

[232]  A Vázquez,et al.  The topological relationship between the large-scale attributes and local interaction patterns of complex networks , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[233]  I. Talianidis,et al.  Coordination of PIC Assembly and Chromatin Remodeling During Differentiation-Induced Gene Activation , 2002, Science.

[234]  Richard Axel,et al.  Genes Expressed in Neurons of Adult Male Drosophila , 1997, Cell.

[235]  Manuel Middendorf,et al.  Systematic identification of statistically significant network measures. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[236]  H. Handa,et al.  Transcriptional Pausing Caused by NELF Plays a Dual Role in Regulating Immediate-Early Expression of the junB Gene , 2006, Molecular and Cellular Biology.

[237]  Valer Gotea,et al.  Spliceosomal small nuclear RNA genes in 11 insect genomes. , 2006, RNA.

[238]  Eugene W. Myers,et al.  A whole-genome assembly of Drosophila. , 2000, Science.

[239]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[240]  K. Anderson,et al.  Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal-ventral polarity in the Drosophila embryo. , 1991, Genes & development.

[241]  J. Jurka,et al.  Molecular paleontology of transposable elements in the Drosophila melanogaster genome , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[242]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[243]  M. Ashburner,et al.  The Adh‐related gene of Drosophila melanogaster is expressed as a functional dicistronic messenger RNA: multigenic transcription in higher organisms , 1997, The EMBO journal.

[244]  S. Lewis,et al.  Genome annotation assessment in Drosophila melanogaster. , 2000, Genome research.

[245]  D. Halligan,et al.  Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. , 2006, Genome research.

[246]  Philip M. Murphy,et al.  Molecular mimicry and the generation of host defense protein diversity , 1993, Cell.

[247]  Chonghui Cheng,et al.  RNA polymerase II accumulation in the promoter-proximal region of the dihydrofolate reductase and gamma-actin genes. , 2003, Molecular and cellular biology.

[248]  D. Gifford,et al.  Tissue-specific transcriptional regulation has diverged significantly between human and mouse , 2007, Nature Genetics.

[249]  Francesca Chiaromonte,et al.  ESPERR: learning strong and weak signals in genomic sequence alignments to identify functional elements. , 2006, Genome research.

[250]  Brendan D. McKay,et al.  Isomorph-Free Exhaustive Generation , 1998, J. Algorithms.

[251]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[252]  J. T. Kadonaga,et al.  The RNA polymerase II core promoter. , 2003, Annual review of biochemistry.

[253]  Albert-László Barabási,et al.  Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network , 2004, BMC Bioinformatics.

[254]  C. Lawrence,et al.  Human-mouse genome comparisons to locate regulatory sites , 2000, Nature Genetics.

[255]  Jürgen Brosius,et al.  RNomics in Drosophila melanogaster: identification of 66 candidates for novel non-messenger RNAs , 2003, Nucleic acids research.

[256]  Srinka Ghosh,et al.  Biological function of unannotated transcription during the early development of Drosophila melanogaster , 2006, Nature Genetics.

[257]  Bin Ma,et al.  From Gene Trees to Species Trees , 2000, SIAM J. Comput..

[258]  A. Gnirke,et al.  Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome , 2002, Genome Biology.

[259]  Wen-Hsiung Li,et al.  An evolutionary perspective on synonymous codon usage in unicellular organisms , 1986, Journal of Molecular Evolution.

[260]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[261]  Masato Ishikawa,et al.  Automatic extraction of motifs represented in the hidden Markov model from a number of DNA sequences , 1998, Bioinform..

[262]  W. Gelbart,et al.  Research resources for Drosophila: the expanding universe , 2005, Nature Reviews Genetics.

[263]  Ethan Bier,et al.  Drosophila, the golden bug, emerges as a tool for human genetics , 2005, Nature Reviews Genetics.

[264]  Kazutoyo Osoegawa,et al.  Genomic analysis of Drosophila melanogaster telomeres: full-length copies of HeT-A and TART elements at telomeres. , 2004, Molecular biology and evolution.

[265]  Julio Rozas,et al.  Comparative genomic analysis of the odorant-binding protein family in 12 Drosophila genomes: purifying selection and birth-and-death evolution , 2007, Genome Biology.

[266]  Xiaoling Wang,et al.  Transcription elongation controls cell fate specification in the Drosophila embryo. , 2007, Genes & development.

[267]  R. Cohen,et al.  The positional, structural, and sequence requirements of the Drosophila TLS RNA localization element. , 2005, RNA.

[268]  I. Bell,et al.  Comprehensive identification of Drosophila dorsal–ventral patterning genes using a whole-genome tiling array , 2006, Proceedings of the National Academy of Sciences.

[269]  W. Miller,et al.  Distinguishing regulatory DNA from neutral sites. , 2003, Genome research.

[270]  Manolis Kellis,et al.  Whole-genome ChIP-chip analysis of Dorsal, Twist, and Snail suggests integration of diverse patterning processes in the Drosophila embryo. , 2007, Genes & development.

[271]  J. Fak,et al.  Transcriptional Control in the Segmentation Gene Network of Drosophila , 2004, PLoS biology.

[272]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[273]  Graziano Pesole,et al.  UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs , 2004, Nucleic Acids Res..

[274]  D. Smyth,et al.  Gene silencing: Cosuppression at a distance , 1997, Current Biology.

[275]  Alisha K Holloway,et al.  Recently Evolved Genes Identified From Drosophila yakuba and D. erecta Accessory Gland Expressed Sequence Tags , 2005, Genetics.

[276]  Kevin R. Thornton,et al.  Retroposed new genes out of the X in Drosophila. , 2002, Genome research.

[277]  D Kosman,et al.  Establishment of the mesoderm-neuroectoderm boundary in the Drosophila embryo. , 1991, Science.

[278]  Guy Perrière,et al.  Tree pattern matching in phylogenetic trees: automatic search for orthologs or paralogs in homologous gene sequence databases , 2005, Bioinform..

[279]  Brenda L Bass,et al.  RNA editing by adenosine deaminases that act on RNA. , 2002, Annual review of biochemistry.

[280]  B. Larget,et al.  Bayesian estimation of concordance among gene trees. , 2006, Molecular biology and evolution.

[281]  S. Batzoglou,et al.  Distribution and intensity of constraint in mammalian genomic sequence. , 2005, Genome research.

[282]  Michael Ashburner,et al.  Drosophila melanogaster: a case study of a model genomic sequence and its consequences. , 2005, Genome research.

[283]  C. Pál,et al.  An integrated view of protein evolution , 2006, Nature Reviews Genetics.

[284]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[285]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[286]  John J Welch,et al.  Estimating the Genomewide Rate of Adaptive Protein Evolution in Drosophila , 2006, Genetics.

[287]  Cédric Feschotte,et al.  PIF-like transposons are common in drosophila and have been repeatedly domesticated to generate new host genes. , 2007, Molecular biology and evolution.

[288]  D. Begun,et al.  Natural selection drives Drosophila immune system evolution. , 2003, Genetics.

[289]  S. Celniker,et al.  High-throughput plasmid cDNA library screening , 2006, Nature Protocols.

[290]  J. Parsch,et al.  Comparative sequence analysis and patterns of covariation in RNA secondary structures. , 2000, Genetics.

[291]  M. Frasch,et al.  Regulation and function of tinman during dorsal mesoderm induction and heart specification in Drosophila. , 1998, Developmental genetics.

[292]  Eugene Berezikov,et al.  Approaches to microRNA discovery , 2006, Nature Genetics.

[293]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[294]  Michael Levine,et al.  Whole-Genome Analysis of Dorsal-Ventral Patterning in the Drosophila Embryo , 2002, Cell.

[295]  Madeline A. Crosby,et al.  FlyBase: genomes by the dozen , 2006, Nucleic Acids Res..

[296]  Michael R. Brent,et al.  Using Multiple Alignments to Improve Gene Prediction , 2005, RECOMB.

[297]  Philip Lijnzaad,et al.  Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit. , 2005, Molecular cell.

[298]  W. Swanson,et al.  Evolution of reproductive proteins from animals and plants. , 2006, Reproduction.

[299]  Graziano Pesole,et al.  Computational identification of protein coding potential of conserved sequence tags through cross-species evolutionary analysis. , 2003, Nucleic acids research.

[300]  P. Andolfatto Adaptive evolution of non-coding DNA in Drosophila , 2005, Nature.

[301]  R. Milo,et al.  Topological generalizations of network motifs. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.