Nonequilibrium Thermodynamics: A Tool for Applied Rheologists

GENERIC is reviewed not only as a new general framework for modeling nonequilibrium systems, but also as a new way of thinking about nonequilibrium dynamics. This unified framework of nonequilibrium thermodynamics is shown to be deeply rooted in the ample accumulated experience with nonequilibrium systems and, provided that state variables with slow and fast time-evolution can be separated, the framework can actually be derived. In view of its natural capability of modeling systems on different levels of description, GENERIC is ideal for the highly topical attempts of .bridging scales. in science and engineering. The practical usefulness of GENERIC as a powerful tool in the phenomenological and structure-guided modeling of complex fluids is illustrated through two examples. GENERIC wird nicht nur als allgemeiner Rahmen zur Modellierung von Nichtgleichgewichtssystemen prasentiert, sondern auch als vollig neuartige Sichtweise von Nichtgleichgewichtsdynamik. Es wird gezeigt, das dieser vereinheitlichte Rahmen der Thermodynamik des Nichtgleichgewichts tief im umfassenden Erfahrungsschatz uber Nichtgleichgewichtssysteme verankert ist und das er sogar streng abgeleitet werden kann, vorausgesetzt das die Zustandsvariablen mit langsamer und schneller Zeitentwicklung getrennt werden konnen. In Anbetracht der Tatsache, das man mit GENERIC in naturlicher Weise Systeme auf verschiedenen Ebenen mit unterschiedlicher Auflosung beschreiben kann, ist dieser Formalismus ideal fur die hochaktuellen Versuche, Skalen zu uberbrucken. Die Nutzlichkeit von GENERIC bei der phanomenologischen und durch ein molekulares Verstandnis geleiteten Modellierung komplexer Flussigkeiten wird durch zwei Beispiele belegt.

[1]  M. Grmela Hamiltonian mechanics of complex fluids , 1989 .

[2]  Hans Christian Öttinger,et al.  General projection operator formalism for the dynamics and thermodynamics of complex fluids , 1998 .

[3]  Takao Ohta,et al.  Dynamics and rheology of complex interfaces. I , 1991 .

[4]  G. Marrucci,et al.  Stress tensor and stress-optical law in entangled polymers 1 Dedicated to Professor Marcel J. Croche , 1998 .

[5]  H. C. Öttinger,et al.  On consistency criteria for stress tensors in kinetic theory models , 1994 .

[6]  H. C. Öttinger On the structural compatibility of a general formalism for nonequilibrium dynamics with special relativity , 1998 .

[7]  Thermodynamically Admissible Form for Discrete Hydrodynamics , 1999, cond-mat/9901101.

[8]  H. C. Öttinger Thermodynamically admissible reptation models with anisotropic tube cross sections and convective constraint release , 2000 .

[9]  H. C. Öttinger Relativistic and nonrelativistic description of fluids with anisotropic heat conduction , 1998 .

[10]  A. Beris,et al.  An Analysis of Single and Double Generator Thermodynamic Formalisms for Complex Fluids. II. The Microscopic Description , 1998 .

[11]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism , 1997 .

[12]  Michael Brereton,et al.  A Modern Course in Statistical Physics , 1981 .

[13]  Ronald G. Larson,et al.  Generalized constitutive equation for polymeric liquid crystals: Part 2. non-homogeneous systems , 1990 .

[14]  A. Beris,et al.  Thermodynamically consistent reptation model without independent alignment , 1999 .

[15]  Miroslav Grmela,et al.  Bracket formulation of dissipative fluid mechanics equations , 1984 .

[16]  H. C. Öttinger,et al.  Time-structure invariance criteria for closure approximations , 1997 .

[17]  R. J. J. Jongschaap,et al.  A generic matrix representation of configuration tensor rheological models , 1994 .

[18]  H. Ch. Öttinger,et al.  Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms , 1995 .

[19]  Brian J. Edwards,et al.  An Analysis of Single and Double Generator Thermodynamic Formalisms for the Macroscopic Description of Complex Fluids , 1998 .

[20]  Brian J. Edwards,et al.  Thermodynamics of flowing systems : with internal microstructure , 1994 .

[21]  Marco Dressler,et al.  Macroscopic thermodynamics of flowing polymeric liquids , 1999 .

[22]  Hans Christian Öttinger,et al.  On The Relationships Between Thermodynamic Formalisms For Complex Fluids , 1997 .

[23]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .

[24]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[25]  H. C. Öttinger GENERIC Formulation of Boltzmann’s Kinetic Equation , 1997 .

[26]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .