Critical random graphs: Diameter and mixing time

Let $\mathcal{C}_{1}$ denote the largest connected component of the critical Erdős–Renyi random graph $G(n,{\frac{1}{n}})$. We show that, typically, the diameter of $\mathcal{C}_{1}$ is of order n1/3 and the mixing time of the lazy simple random walk on $\mathcal{C}_{1}$ is of order n. The latter answers a question of Benjamini, Kozma and Wormald. These results extend to clusters of size n2/3 of p-bond percolation on any d-regular n-vertex graph where such clusters exist, provided that p(d−1)≤1+O(n−1/3).

[1]  C. Nash-Williams,et al.  Random walk and electric currents in networks , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  Frank Spitzer,et al.  The Galton-Watson Process with Mean One and Finite Variance , 1966 .

[3]  Prabhakar Raghavan,et al.  The electrical resistance of a graph captures its commute and cover times , 1989, STOC '89.

[4]  David J. Aldous,et al.  Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .

[5]  P. Tetali Random walks and the effective resistance of networks , 1991 .

[6]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[7]  Russell Lyons,et al.  Random Walks, Capacity and Percolation on Trees , 1992 .

[8]  B. Pittel,et al.  The structure of a random graph at the point of the phase transition , 1994 .

[9]  Russell Lyons,et al.  Conceptual proofs of L log L criteria for mean behavior of branching processes , 1995 .

[10]  David Aldous,et al.  Brownian excursions, critical random graphs and the multiplicative coalescent , 1997 .

[11]  Tomasz Luczak Random trees and random graphs , 1998, Random Struct. Algorithms.

[12]  Tomasz Łuczak,et al.  Random trees and random graphs , 1998 .

[13]  Y. Peres Probability on Trees: An Introductory Climb , 1999 .

[14]  F. Chung,et al.  The Diameter of Random Sparse Graphs , 2000 .

[15]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[16]  Fan Chung Graham,et al.  The Diameter of Sparse Random Graphs , 2001, Adv. Appl. Math..

[17]  Joel H. Spencer,et al.  Random subgraphs of finite graphs: I. The scaling window under the triangle condition , 2005, Random Struct. Algorithms.

[18]  Asaf Nachmias,et al.  The critical random graph, with martingales , 2005 .

[19]  Martin T. Barlow,et al.  Random walk on the incipient infinite cluster on trees , 2005 .

[20]  Prabhakar Raghavan,et al.  The electrical resistance of a graph captures its commute and cover times , 2005, computational complexity.

[21]  Vijaya Ramachandran,et al.  The diameter of sparse random graphs , 2007, Random Struct. Algorithms.

[22]  BollobásBéla,et al.  The phase transition in inhomogeneous random graphs , 2007 .

[23]  B. Reed,et al.  The Evolution of the Mixing Rate , 2007, math/0701474.

[24]  Béla Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007, Random Struct. Algorithms.

[25]  Remco van der Hofstad,et al.  Random subgraphs of the 2D Hamming graph: the supercritical phase , 2008, 0801.1607.

[26]  Asaf Nachmias,et al.  Critical percolation on random regular graphs , 2010 .

[27]  Yuval Peres,et al.  Critical percolation on random regular graphs , 2007, Random Struct. Algorithms.