Fatigue of rare-earth containing magnesium alloys: a review

Lightweighting in ground vehicles is today considered as one of the most effective strategies to improve fuel economy and reduce anthropogenic environment-damaging and climate-changing emissions. Magnesium (Mg) alloy, as a strategic ultra-lightweight metallic material, has recently drawn a considerable interest in the transportation industry to reduce the weight of vehicles due to their high strength-to-weight ratio, dimensional stability, good machinability and recyclability. However, the hexagonal close-packed crystal structure of Mg alloys gives only limited slip systems and develops sharp deformation textures associated with strong mechanical anisotropy and tension–compression yield asymmetry. For the vehicle components subjected to dynamic loading, such asymmetry could exert an unfavourable influence on the material performance. This problem could be conquered through weakening the texture via addition of rare-earth (RE) elements. Thus, a number of RE-containing Mg alloys have recently been developed. To guarantee the structural integrity, durability and safety of highly loaded structural components, understanding the characteristics and mechanisms of cyclic deformation and fatigue fracture of such RE-Mg alloys is of vital importance. In this review, the available fatigue properties including stress-controlled fatigue strength, strain-controlled cyclic deformation characteristics and fatigue crack propagation behaviour are summarized, along with the microstructural change and crystallographic texture weakening in the RE-containing Mg alloys in different forms (cast, extruded and heat-treated states), in comparison with those of RE-free Mg alloys.

[1]  P. G. Partridge The crystallography and deformation modes of hexagonal close-packed metals , 1967 .

[2]  R. I. Stephens,et al.  Fatigue of Magnesium Alloys , 1990 .

[3]  H. Okamoto Mg-Y (Magnesium-Yttrium) , 1992 .

[4]  R. Stephens,et al.  Fatigue of AZ91E-T6 Cast Magnesium Alloy , 1993 .

[5]  P. Prangnell,et al.  Tensile-compressive yield asymmetries in high strength wrought magnesium alloys , 1994 .

[6]  H. Christ,et al.  Cyclic stress-strain response and microstructure under variable amplitude loading , 1996 .

[7]  C. Tomé,et al.  Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y , 2001 .

[8]  B. Mordike,et al.  Magnesium: Properties — applications — potential , 2001 .

[9]  M. Pérez-Prado,et al.  Texture evolution during annealing of magnesium AZ31 alloy , 2002 .

[10]  D. McDowell,et al.  High cycle fatigue mechanisms in a cast AM60B magnesium alloy , 2002 .

[11]  A. Luo Magnesium: Current and potential automotive applications , 2002 .

[12]  J. Nie Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys , 2003 .

[13]  T. Kimura,et al.  Strengthening effect of Zn in heat resistant Mg-Y-Zn solid solution alloys , 2003 .

[14]  A. Deschamps,et al.  Hardening precipitation in a Mg–4Y–3RE alloy , 2003 .

[15]  K. Kainer,et al.  Magnesium alloys and technology , 2003 .

[16]  K. Maruyama,et al.  The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys , 2003 .

[17]  A. Vinogradov,et al.  Fatigue life of fine-grain Al–Mg–Sc alloys produced by equal-channel angular pressing , 2003 .

[18]  P. Uggowitzer,et al.  Mechanical anisotropy of extruded Mg-6% Al-1% Zn alloy , 2004 .

[19]  K. Kainer,et al.  Fatigue of Magnesium Alloys , 2004 .

[20]  D. McDowell,et al.  High cycle fatigue of a die cast AZ91E-T4 magnesium alloy , 2004 .

[21]  Zi-kui Liu,et al.  Modification of the thermodynamic model for the Mg–Zr system , 2005 .

[22]  A. Gokhale,et al.  Inverse surface macro-segregation in high-pressure die-cast AM60 magnesium alloy and its effects on fatigue behavior , 2005 .

[23]  Zhike Peng,et al.  Grain refining mechanism in Mg–9Gd–4Y alloys by zirconium , 2005 .

[24]  W. Ding,et al.  Microstructure evolution in a Mg–15Gd–0.5Zr (wt.%) alloy during isothermal aging at 250°C , 2006 .

[25]  Q. Peng,et al.  Microstructures and tensile properties of Mg-8Gd-0.6Zr-xNd-yY (x+y=3, mass%) alloys , 2006 .

[26]  Yi Fang,et al.  High Cycle Fatigue Properties of Die-Cast Magnesium Alloy AZ91D with Addition of Different Concentrations of Cerium , 2006 .

[27]  M. Horstemeyer,et al.  Identification and modeling of fatigue crack growth mechanisms in a die-cast AM50 magnesium alloy , 2006 .

[28]  W. Ding,et al.  Precipitation in a Mg–10Gd–3Y–0.4Zr (wt.%) alloy during isothermal ageing at 250 °C , 2006 .

[29]  X. Fang,et al.  Effect of Yttrium on Microstructures and Mechanical Properties of Hot Rolled AZ61 Wrought Magnesium Alloy , 2006 .

[30]  M. Nishijima,et al.  Characterization of β′ Phase Precipitates in an Mg-5 at%Gd Alloy Aged in a Peak Hardness Condition, Studied by High-Angle Annular Detector Dark-Field Scanning Transmission Electron Microscopy , 2006 .

[31]  J. C. Huang,et al.  The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy , 2007 .

[32]  M. Barnett Twinning and the ductility of magnesium alloys Part I: “Tension” twins , 2007 .

[33]  P. Lukáč,et al.  On the influence of the grain size and solute content on the AE response of magnesium alloys tested in tension and compression , 2007 .

[34]  A. Chamos,et al.  Mechanical Performance Evaluation of Cast Magnesium Alloys for Automotive and Aeronautical Applications , 2007 .

[35]  S. Hasegawa,et al.  Evaluation of low cycle fatigue life in AZ31 magnesium alloy , 2007 .

[36]  Y. Yang,et al.  The effect of cerium on high-cycle fatigue properties of die-cast magnesium alloy , 2007 .

[37]  Qudong Wang,et al.  Behavior of Mg–15Gd–5Y–0.5Zr alloy during solution heat treatment from 500 to 540 °C , 2007 .

[38]  I. Procházka,et al.  Influence of deformation on precipitation process in Mg–15 wt.%Gd alloy , 2007 .

[39]  S. Agnew,et al.  The texture and anisotropy of magnesium–zinc–rare earth alloy sheets , 2007 .

[40]  Liming Peng,et al.  Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy , 2007 .

[41]  Xinjin Cao,et al.  Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy , 2008 .

[42]  G. Totten FATIGUE CRACK PROPAGATION , 2008 .

[43]  D. L. Chen,et al.  Strain controlled cyclic deformation behavior of an extruded magnesium alloy , 2008 .

[44]  A. Chamos,et al.  Tensile and fatigue behaviour of wrought magnesium alloys AZ31 and AZ61 , 2008 .

[45]  Xing-gang Li,et al.  High cycle fatigue properties of die-cast magnesium alloy AZ91D-1%MM , 2008 .

[46]  J. Robson,et al.  Review on Research and Development of Magnesium Alloys , 2008 .

[47]  Kun Yu,et al.  Effects of grain refinement on mechanical properties and microstructures of AZ31 alloy , 2008 .

[48]  H. J. Yang,et al.  Cyclic deformation behavior of as-extruded Mg–3%Al–1%Zn , 2008 .

[49]  M. Barnett,et al.  The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility , 2008 .

[50]  Eric A. Nyberg,et al.  Magnesium for Future Autos , 2008 .

[51]  M. Barnett,et al.  Texture and mechanical anisotropy in three extruded magnesium alloys , 2008 .

[52]  M. Horstemeyer,et al.  Fatigue Crack Growth Mechanisms in High-Pressure Die-Cast Magnesium Alloys , 2008 .

[53]  P. Liaw,et al.  Internal stress relaxation and load redistribution during the twinning–detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A , 2008 .

[54]  Y. Yang,et al.  High cycle fatigue characterization of two die-cast magnesium alloys , 2008 .

[55]  M. Barnett,et al.  Effect of composition on the texture and deformation behaviour of wrought Mg alloys , 2008 .

[56]  Fan Yang,et al.  Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime , 2008 .

[57]  A. Luo,et al.  Strain-Controlled Low-Cycle Fatigue Properties of a Newly Developed Extruded Magnesium Alloy , 2008 .

[58]  M. Pekguleryuz,et al.  The recrystallization and texture of magnesium–zinc–cerium alloys , 2008 .

[59]  A. Luo,et al.  Effect of strain ratio and strain rate on low cycle fatigue behavior of AZ31 wrought magnesium alloy , 2009 .

[60]  A. Luo,et al.  Dependence of the distribution of deformation twins on strain amplitudes in an extruded magnesium alloy after cyclic deformation , 2009 .

[61]  J. Meng,et al.  Microstructures and mechanical properties of extruded Mg-8Gd-0.4Zr alloys containing Zn , 2009 .

[62]  M. Barnett,et al.  Effect of particles on the formation of deformation twins in a magnesium-based alloy , 2009 .

[63]  J. Edmonds,et al.  Implications of Limiting CO2 Concentrations for Land Use and Energy , 2009, Science.

[64]  A. Luo,et al.  Low cycle fatigue properties of an extruded AZ31 magnesium alloy , 2009 .

[65]  Weiqi Wang,et al.  Tensile and Isothermal Fatigue Behaviors of Mg-12Gd-3Y-0.5Zr Alloy at High Temperature , 2009 .

[66]  K. Kainer,et al.  Effect of rare earth elements on the microstructure and texture development in magnesium-manganese alloys during extrusion , 2010 .

[67]  Yongrong Xie,et al.  Synthesis and crystal structure of novel samarium coordination polymer derived from sulfonic acid ligand , 2010 .

[68]  M. Barnett,et al.  The effect of Gd on the recrystallisation, texture and deformation behaviour of magnesium-based alloys , 2010 .

[69]  W. Ding,et al.  Influence of heat treatment on fatigue behaviour of high-strength Mg―10Gd―3Y alloy , 2010 .

[70]  S. Bhole,et al.  Cyclic deformation and twinning in a semi-solid processed AZ91D magnesium alloy , 2010 .

[71]  Xing Zhang,et al.  New extrusion process of Mg alloy automobile wheels , 2010 .

[72]  Q. Duan,et al.  Fatigue deformation characteristic of as-extruded AM30 magnesium alloy , 2010 .

[73]  H. Wenk,et al.  The effects of texture and extension twinning on the low-cycle fatigue behavior of a rolled magnesium alloy, AZ31B , 2010 .

[74]  K. Kainer,et al.  High cycle fatigue behaviour of magnesium alloys , 2010 .

[75]  J. Bohlen,et al.  Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets , 2010 .

[76]  C. Charitidis,et al.  An investigation on the high stress sensitivity of fatigue life of rolled AZ31 magnesium alloy under constant amplitude fatigue loading , 2010 .

[77]  T. Pollock Weight Loss with Magnesium Alloys , 2010, Science.

[78]  C. Sinclair,et al.  Reducing the tension–compression yield asymmetry in a Mg–8Al–0.5Zn alloy via precipitation , 2010 .

[79]  You Yang,et al.  Influence of neodymium on high cycle fatigue behavior of die cast AZ91D magnesium alloy , 2010 .

[80]  M. Störmer,et al.  Magnesium alloys as implant materials--principles of property design for Mg-RE alloys. , 2010, Acta biomaterialia.

[81]  S. Liang,et al.  Precipitation and its effect on age-hardening behavior of as-cast Mg–Gd–Y alloy , 2011 .

[82]  Jian Zhou,et al.  First-principles calculations of the β′-Mg7Gd precipitate in Mg-Gd binary alloys , 2011 .

[83]  S. Bhole,et al.  Microstructure and Mechanical Properties of Fiber-Laser-Welded and Diode-Laser-Welded AZ31 Magnesium Alloy , 2011 .

[84]  K. Lu,et al.  Mechanical Anisotropy of Extruded Mg-10Gd-2Y-0.5Zr Alloy , 2011 .

[85]  Fan Zhang,et al.  Microstructure and mechanical properties of Mg-Gd-Y-Zr alloy processed by equal channel angular pressing , 2011 .

[86]  Z. Zhang,et al.  Fatigue properties of rolled magnesium alloy (AZ31) sheet: Influence of specimen orientation , 2011 .

[87]  Q. Schiermeier Increased flood risk linked to global warming , 2011, Nature.

[88]  G. Gottstein,et al.  Texture and microstructure development during hot deformation of ME20 magnesium alloy: Experiments and simulations , 2011 .

[89]  S. Marshall,et al.  Ongoing climate change following a complete cessation of carbon dioxide emissions , 2011 .

[90]  W. Ding,et al.  Effect of microstructures and texture development on tensile properties of Mg-10Gd-3Y alloy , 2011 .

[91]  Qudong Wang,et al.  Effects of heat treatments on microstructure and mechanical properties of Mg–11Y–5Gd–2Zn–0.5Zr (wt.%) alloy , 2011 .

[92]  Qudong Wang,et al.  Enhanced very high cycle fatigue performance of extruded Mg-12Gd-3Y-0.5Zr magnesium alloy , 2011 .

[93]  Suxiang Wu,et al.  Influence of grain size and texture on the yield asymmetry of Mg-3Al-1Zn alloy , 2011 .

[94]  L. Wagner,et al.  Effects of mechanical surface treatments on fatigue performance of extruded ZK60 alloy , 2011 .

[95]  A. Luo,et al.  Effect of twinning, slip, and inclusions on the fatigue anisotropy of extrusion-textured AZ61 magnesium alloy , 2011 .

[96]  G. Hegerl,et al.  Human contribution to more-intense precipitation extremes , 2011, Nature.

[97]  S. Ringer,et al.  Solute segregation and texture modification in an extruded magnesium alloy containing gadolinium , 2011 .

[98]  Y. Q. Wang,et al.  Effects of neodymium rich rare earth elements on microstructure and mechanical properties of as cast AZ31 magnesium alloy , 2011 .

[99]  W. Ding,et al.  An eigenstrain-based finite element model and the evolution of shot peening residual stresses during fatigue of GW103 magnesium alloy , 2012 .

[100]  Yanyao Jiang,et al.  Multiaxial fatigue of extruded AZ31B magnesium alloy , 2012 .

[101]  J. Nie Precipitation and Hardening in Magnesium Alloys , 2012, Metallurgical and Materials Transactions A.

[102]  William J. Joost,et al.  Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering , 2012 .

[103]  Yanyao Jiang,et al.  An experimental study on cyclic deformation and fatigue of extruded ZK60 magnesium alloy , 2012 .

[104]  J. Murray,et al.  Climate policy: Oil's tipping point has passed , 2012, Nature.

[105]  Zhen-hua Chen,et al.  The cyclic softening and evolution of microstructures for Mg–10Gd–2.0Y–0.46Zr alloy under low cycle fatigue at 573 K , 2012 .

[106]  S. Agnew,et al.  Effects of Solute and Second-Phase Particles on the Texture of Nd-Containing Mg Alloys , 2012, Metallurgical and Materials Transactions A.

[107]  F. Fereshteh-Saniee,et al.  Effects of extrusion and equal channel angular pressing on the microstructure, tensile and fatigue behaviour of the wrought magnesium alloy AZ80 , 2012 .

[108]  Qing Liu,et al.  Strengthening and toughening of magnesium alloy by {1 0 −1 2} extension twins , 2012 .

[109]  K. Hariharan,et al.  Modification of fatigue strain‐life equation for sheet metals considering anisotropy due to crystallographic texture , 2012 .

[110]  Fan Zhang,et al.  Effect of aging treatment on dynamic behavior of Mg-Gd-Y Alloy , 2012 .

[111]  S. Bhole,et al.  Fiber Laser Welded AZ31 Magnesium Alloy: The Effect of Welding Speed on Microstructure and Mechanical Properties , 2012, Metallurgical and Materials Transactions A.

[112]  D. Sarker,et al.  Detwinning and strain hardening of an extruded magnesium alloy during compression , 2012 .

[113]  S. Bhole,et al.  Cyclic deformation behavior of a super-vacuum die cast magnesium alloy , 2012 .

[114]  Yesheng Li,et al.  Low Cycle Fatigue Behavior of AZ91D Magnesium Alloy Containing Rare-Earth Ce Element , 2012 .

[115]  P. Wanjara,et al.  Lap shear strength and fatigue life of friction stir spot welded AZ31 magnesium and 5754 aluminum alloys , 2012 .

[116]  Guohua Wu,et al.  Effect of heat treatment on microstructures and mechanical properties of sand-cast Mg-10Gd-3Y-0.5Zr magnesium alloy , 2012 .

[117]  D. L. Chen,et al.  Low cycle fatigue of a rare-earth containing extruded magnesium alloy , 2013 .

[118]  W. Ding,et al.  Cyclic deformation and fatigue of extruded Mg–Gd–Y magnesium alloy , 2013 .

[119]  D. L. Chen,et al.  Texture transformation in an extruded magnesium alloy under pressure , 2013 .

[120]  Junting Liu,et al.  Strain-controlled fatigue properties of dissimilar welded joints between Ti–6Al–4V and Ti17 alloys , 2013 .

[121]  S. Li,et al.  Low-cycle Fatigue Behaviors of an As-extruded Mg-12%Gd-3%Y-0.5%Zr Alloy , 2013 .

[122]  T. Al-Samman Modification of texture and microstructure of magnesium alloy extrusions by particle-stimulated recrystallization , 2013 .

[123]  Q. Schiermeier Water risk as world warms , 2013, Nature.

[124]  M. Mokhtarishirazabad,et al.  Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy , 2013 .

[125]  S. Vignieri,et al.  Natural systems in changing climates. Once and future climate change. Introduction. , 2013, Science.

[126]  J. M. Alegre,et al.  Magnesium alloy defectology AZ91D high-pressure die cast and influence on the fatigue behaviour , 2013 .

[127]  Dingqiang Li,et al.  Effect of strain ratio on cyclic deformation behavior of a rare-earth containing extruded magnesium alloy , 2013 .

[128]  X. Fang,et al.  Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries , 2013, Science.

[129]  J. Hirsch,et al.  Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications , 2013 .

[130]  D. L. Chen,et al.  Effect of rare earth elements on deformation behavior of an extruded Mg-10Gd-3Y-0.5Zr alloy during compression , 2013 .

[131]  S. Bhole,et al.  Low cycle fatigue behavior of a semi-solid processed AM60B magnesium alloy , 2013 .

[132]  M. McNutt Climate Change Impacts , 2013, Science.

[133]  Guohua Wu,et al.  Grain refinement and fatigue strengthening mechanisms in as-extruded Mg–6Zn–0.5Zr and Mg–10Gd–3Y–0.5Zr magnesium alloys by shot peening , 2013 .

[134]  Xiaoqin Zeng,et al.  A modified Johnson-Cook constitutive relationship for a rare-earth containing magnesium alloy , 2013 .

[135]  F. A. Mirza,et al.  Cyclic Deformation Behavior of a Rare-Earth Containing Extruded Magnesium Alloy: Effect of Heat Treatment , 2015, Metallurgical and Materials Transactions A.

[136]  J. Francis,et al.  Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere , 2014 .

[137]  R. Zhu,et al.  Low-cycle fatigue behavior of extruded Mg–10Gd–2Y–0.5Zr alloys , 2014 .