SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND

Type-IIn supernovae (SNe IIn), which are characterized by strong interaction of their ejecta with the surrounding circumstellar matter (CSM), provide a unique opportunity to study the mass-loss history of massive stars shortly before their explosive death. We present the discovery and follow-up observations of an SN IIn, PTF 09uj, detected by the Palomar Transient Factory (PTF). Serendipitous observations by Galaxy Evolution Explorer (GALEX) at ultraviolet (UV) wavelengths detected the rise of the SN light curve prior to the PTF discovery. The UV light curve of the SN rose fast, with a timescale of a few days, to a UV absolute AB magnitude of about –19.5. Modeling our observations, we suggest that the fast rise of the UV light curve is due to the breakout of the SN shock through the dense CSM (n ≈ 10^(10) cm^(–3)). Furthermore, we find that prior to the explosion the progenitor went through a phase of high mass-loss rate (~0.1 M_⊙ yr^(–1)) that lasted for a few years. The decay rate of this SN was fast relative to that of other SNe IIn.

[1]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[2]  Optical and infrared spectroscopy of the type IIn SN 1998S: days 3–127 , 2000, astro-ph/0011340.

[3]  Richard McCray,et al.  Shell-shocked Diffusion Model for the Light Curve of SN 2006gy , 2007, 0710.3428.

[4]  E. Ofek,et al.  An extremely luminous X-ray outburst at the birth of a supernova , 2008, Nature.

[5]  A. Gal-yam,et al.  A massive hypergiant star as the progenitor of the supernova SN 2005gl , 2009, Nature.

[6]  D. Fox,et al.  CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE IIn SUPERNOVAE: TYPICAL PROPERTIES AND IMPLICATIONS FOR THEIR PROGENITOR STARS , 2010, 1010.2689.

[7]  S. Colgate Early gamma rays from supernovae , 1974 .

[8]  David Schiminovich,et al.  Probing Shock Breakout with Serendipitous GALEX Detections of Two SNLS Type II-P Supernovae , 2008 .

[9]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[10]  The expulsion of stellar envelopes in core-collapse supernovae , 1998, astro-ph/9807046.

[11]  E. al.,et al.  Optical and infrared photometry of the Type IIn SN 1998S: days 11–146 , 2000, astro-ph/0006080.

[12]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[13]  Marco Bonati,et al.  The Automated Palomar 60 Inch Telescope , 2006, astro-ph/0608323.

[14]  Fiona A. Harrison,et al.  GRB 070125: The First Long-Duration Gamma-Ray Burst in a Halo Environment* , 2008 .

[15]  E. Schlegel A new subclass of Type II supernovae , 1990 .

[16]  Pierre Astier,et al.  Supernova Shock Breakout from a Red Supergiant , 2008, Science.

[17]  T. Weaver The structure of supernova shock waves. , 1976 .

[18]  J. Sollerman,et al.  Optical and Ultraviolet Spectroscopy of SN 1995N: Evidence for Strong Circumstellar Interaction , 2001, astro-ph/0108149.

[19]  M. Valle,et al.  Optical spectrum of SN 1978K: emission from shocked clouds in the circumstellar wind , 1995 .

[20]  A. Szalay,et al.  The Calibration and Data Products of GALEX , 2007 .

[21]  W. M. Wood-Vasey,et al.  SUPERNOVA 2009kf: AN ULTRAVIOLET BRIGHT TYPE IIP SUPERNOVA DISCOVERED WITH PAN-STARRS 1 AND GALEX , 2010, 1001.5427.

[22]  Ryan Chornock,et al.  SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.

[23]  Philip Chang,et al.  SHOCK BREAKOUT FROM TYPE Ia SUPERNOVA , 2009, 0909.2643.

[24]  SN 2006tf: Precursor Eruptions and the Optically Thick Regime of Extremely Luminous Type IIn Supernovae , 2008, 0804.0042.

[25]  SN 1994W: an interacting supernova or two interacting shells? , 2008, 0804.0428.

[26]  R. Foley,et al.  CORONAL LINES AND DUST FORMATION IN SN 2005ip: NOT THE BRIGHTEST, BUT THE HOTTEST TYPE IIn SUPERNOVA , 2008, 0809.5079.

[27]  E. Waxman,et al.  GRB 060218: A Relativistic Supernova Shock Breakout , 2007, astro-ph/0702450.

[28]  R. I. Klein,et al.  X-ray bursts from type II supernovae , 1978 .

[29]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[30]  N. B. Suntzeff,et al.  The J-Band Light Curve of SN 2003lw, Associated with GRB 031203 , 2004, astro-ph/0403608.

[31]  Puragra Guhathakurta,et al.  Supernovae in Low-Redshift Galaxy Clusters: Observations by the Wise Observatory Optical Transient Search (WOOTS) , 2007, 0711.0808.

[32]  N. Chugai,et al.  SN 1988Z: low-mass ejecta colliding with the clumpy wind? , 1994 .

[33]  E. Nakar,et al.  EARLY SUPERNOVAE LIGHT CURVES FOLLOWING THE SHOCK BREAKOUT , 2010, 1004.2496.

[34]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[35]  S. R. Kulkarni Modeling Supernova-like Explosions Associated with Gamma-ray Bursts with Short Durations , 2005 .

[36]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[37]  S. Valenti,et al.  Supernova 2002ic: The Collapse of a Stripped-Envelope, Massive Star in a Dense Medium? , 2006, astro-ph/0611125.

[38]  Eli Waxman,et al.  THE EARLY UV/OPTICAL EMISSION FROM CORE-COLLAPSE SUPERNOVAE , 2010, 1002.3414.

[39]  Thomas Matheson,et al.  Not Color‐Blind: Using Multiband Photometry to Classify Supernovae , 2002 .

[40]  D. Fox,et al.  On the Progenitor of SN 2005gl and the Nature of Type IIn Supernovae , 2006, astro-ph/0608029.

[41]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[42]  E. Waxman,et al.  FAST RADIATION MEDIATED SHOCKS AND SUPERNOVA SHOCK BREAKOUTS , 2009, 0902.4708.

[43]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.