Hamiltonian structure of rational isomonodromic deformation systems
暂无分享,去创建一个
[1] V. Rubtsov,et al. Isomonodromic Deformations: Confluence, Reduction and Quantisation , 2023, Communications in Mathematical Physics.
[2] John Harnad,et al. Tau Functions and their Applications , 2021 .
[3] Robert Conte,et al. The Painlevé Handbook , 2020, Mathematical Physics Studies.
[4] P. Boalch. Symplectic Manifolds and Isomonodromic Deformations. , 2020, 2002.00052.
[5] A. Its,et al. On Some Hamiltonian Properties of the Isomonodromic Tau Functions , 2018, Reviews in Mathematical Physics.
[6] O. Lisovyy,et al. Monodromy dependence and connection formulae for isomonodromic tau functions , 2016, 1604.03082.
[7] Daisuke Yamakawa. Tau functions and Hamiltonians of isomonodromic deformations , 2017 .
[8] O. Lisovyy,et al. Fredholm Determinant and Nekrasov Sum Representations of Isomonodromic Tau Functions , 2016, 1608.00958.
[9] Lena Vogler,et al. The Direct Method In Soliton Theory , 2016 .
[10] D. Guzzetti. A Review of the Sixth Painlevé Equation , 2012, 1210.0311.
[11] O. Lisovyy,et al. Isomonodromic Tau-Functions from Liouville Conformal Blocks , 2014, 1401.6104.
[12] O. Lisovyy,et al. Conformal field theory of Painlevé VI , 2012, 1207.0787.
[13] P. Boalch. Simply-laced isomonodromy systems , 2011, 1107.0874.
[14] John Harnad,et al. Random Matrices, Random Processes and Integrable Systems , 2011 .
[15] O. Lisovyy,et al. Algebraic solutions of the sixth Painleve equation , 2008, 0809.4873.
[16] J. Hurtubise. On the geometry of isomonodromic deformations , 2008, 0804.0249.
[17] D. Guzzetti. The logarithmic asymptotics of the sixth Painlevé equation , 2008, 0801.1157.
[18] M. Mazzocco,et al. The Hamiltonian structure of the second Painlevé hierarchy , 2006, nlin/0610066.
[19] N. Woodhouse. Duality for the general isomonodromy problem , 2006, nlin/0601003.
[20] B. Eynard,et al. Semiclassical Orthogonal Polynomials, Matrix Models and Isomonodromic Tau Functions , 2004, nlin/0410043.
[21] M. Y. Mo,et al. Isomonodromic deformation of resonant rational connections , 2005, nlin/0510011.
[22] P. Boalch. The fifty-two icosahedral solutions to Painlevé VI , 2004, math/0406281.
[23] S. Oblezin. Discrete Symmetries of Systems of Isomonodromic Deformations of Second-Order Fuchsian Differential Equations , 2004 .
[24] P. Boalch. From Klein to Painlevé Via Fourier, Laplace and Jimbo , 2003, math/0308221.
[25] B. Eynard,et al. Differential Systems for Biorthogonal Polynomials Appearing in 2-Matrix Models and the Associated Riemann–Hilbert Problem , 2002, nlin/0208002.
[26] B. Eynard,et al. Partition functions for matrix models and isomonodromic tau functions , 2002, nlin/0204054.
[27] P. Boalch. Quasi-Hamiltonian geometry of meromorphic connections , 2002, math/0203161.
[28] Alexander Its,et al. Isomonodromic Deformations and Applications in Physics , 2002 .
[29] N. Woodhouse. The Symplectic and twistor geometry of the general isomonodromic deformation problem , 2000, nlin/0007024.
[30] J. Harnad. On the Bilinear Equations for Fredholm Determinants Appearing in Random Matrices , 1999, solv-int/9906004.
[31] Monica Ugaglia. On a Poisson structure on the space of stokes matrices , 1999, math/9902045.
[32] N. Hitchin. Geometrical aspects of Schlesinger's equation , 1997 .
[33] N. Joshi. The Second Painlevé Equation in the Large‐parameter Limit I: Local Asymptotic Analysis , 1997, solv-int/9710022.
[34] J. Harnad,et al. R‐matrix construction of electromagnetic models for the Painlevé transcendents , 1994, hep-th/9406077.
[35] A. Fokas,et al. On the asymptotic analysis of the Painlevé equations via the isomonodromy method , 1994 .
[36] J. Harnad. Dual isomonodromic deformations and moment maps to loop algebras , 1993, hep-th/9301076.
[37] J. Harnad. Isospectral flow and Liouville-Arnold integration in loop algebrast , 1993, hep-th/9306127.
[38] C. Tracy,et al. Hamiltonian Structure of Equations Appearing in Random Matrices , 1993, hep-th/9301051.
[39] M. R. Adams,et al. Darboux coordinates and Liouville-Arnold integration in loop algebras , 1992, hep-th/9210089.
[40] M. Kruskal,et al. The Painlevé Connection Problem: An Asymptotic Approach. I , 1992 .
[41] 岩崎 克則,et al. From Gauss to Painlevé : a modern theory of special functions : dedicated to Tosihusa Kimura , 1991 .
[42] M. R. Adams,et al. Dual moment maps into loop algebras , 1990 .
[43] 渋谷 泰隆. Linear differential equations in the complex domain : problems of analytic continuation , 1990 .
[44] M. R. Adams,et al. Isospectral hamiltonian flows in finite and infinite dimensions , 1988 .
[45] M. Semenov-Tian-Shansky,et al. Compatible poisson structures for lax equations: An r-matrix approach , 1988 .
[46] Kazuo Okamoto. Studies on the Painleve equations II , 1987 .
[47] Kazuo Okamoto. Studies on the Painlevé equations , 1986 .
[48] Alexander Its,et al. Isomonodromic Deformation Method in the Theory of Painleve Equations , 1986 .
[49] G. Segal,et al. Loop groups and equations of KdV type , 1985 .
[50] M. A. Semenov-Tyan-Shanskii. What is a classical r-matrix? , 1983 .
[51] Mikio Sato. Soliton Equations as Dynamical Systems on Infinite Dimensional Grassmann Manifold , 1983 .
[52] A. Newell,et al. The Inverse Monodromy Transform is a Canonical Transformation , 1982 .
[53] Michio Jimbo,et al. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .
[54] M. Jimbo,et al. Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II , 1981 .
[55] Boris Dubrovin,et al. Theta functions and non-linear equations , 1981 .
[56] Michio Jimbo,et al. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function , 1981 .
[57] P. Moerbeke,et al. Completely Integrable Systems, Euclidean Lie-algebras, and Curves , 1980 .
[58] P. Moerbeke,et al. Linearization of Hamiltonian systems, Jacobi varieties and representation theory☆ , 1980 .
[59] A. Newell,et al. Monodromy- and spectrum-preserving deformations I , 1980 .
[60] Kazuo Okamoto,et al. Polynomial Hamiltonians associated with Painlevé equations, I , 1980 .
[61] Werner Balser,et al. Birkhoff invariants and stokes' multipliers for meromorphic linear differential equations , 1979 .
[62] Igor Krichever,et al. METHODS OF ALGEBRAIC GEOMETRY IN THE THEORY OF NON-LINEAR EQUATIONS , 1977 .
[63] M. Gaudin. Diagonalisation d'une classe d'hamiltoniens de spin , 1976 .
[64] V. Matveev,et al. Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg-de Vries equation , 1975 .
[65] Tosio Kato. Perturbation theory for linear operators , 1966 .
[66] R. Garnier. Solution du problème de Riemann pour les systèmes différentiels linéaires du second ordre , 1926 .
[67] Par M. Rene Garnier. Sur une classe de systèmes différentiels abéliens déduits de la théorie des équations linéaires , 1919 .
[68] R. Garnier. Étude de l'intégrale générale de l'équation VI de M. Painlevé dans le voisinage de ses singularités transcendantes , 1917 .
[69] G. Birkhoff. The Generalized Riemann Problem for Linear Differential Equations and the Allied Problems for Linear Difference and q-Difference Equations , 1913 .
[70] L. Schlesinger. Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten. , 1912 .
[71] René Garnier,et al. Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes , 1912 .
[72] R. Fuchs. Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen , 1911 .
[73] P. Painlevé,et al. Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme , 1902 .
[74] P. Painlevé,et al. Mémoire sur les équations différentielles dont l'intégrale générale est uniforme , 1900 .
[75] E. Vessiot. Sur quelques équations différentielles ordinaires du second ordre , 1895 .