Hamiltonian structure of rational isomonodromic deformation systems

The Hamiltonian approach to isomonodromic deformation systems is extended to include generic rational covariant derivative operators on the Riemann sphere with irregular singularities of arbitrary Poincar\'e rank. The space of rational connections with given pole degrees carries a natural Poisson structure corresponding to the standard classical rational R-matrix structure on the dual space $L^*gl(r)$ of the loop algebra $Lgl(r)$. Nonautonomous isomonodromic counterparts of the isospectral systems generated by spectral invariants are obtained by identifying the deformation parameters as Casimir functions on the phase space. These are shown to coincide with the higher Birkhoff invariants determining the local asymptotics near to irregular singular points, together with the pole loci. Infinitesimal isomonodromic deformations are shown to be generated by the sum of the Hamiltonian vector field and an explicit derivative vector field that is transversal to the symplectic foliation. The Casimir functions serve as coordinates complementing those along the symplectic leaves, extended by the exponents of formal monodromy, defining a local symplectomorphism between them. The explicit derivative vector fields preserve the Poisson structure and define a flat transversal connection, spanning an integrable distribution whose leaves, locally, may be identified as the orbits of a free abelian group. The projection of the infinitesimal isomonodromic deformations vector fields to the quotient manifold under this action gives the commuting Hamiltonian vector fields corresponding to the spectral invariants dual to the Birkhoff invariants and the pole loci.

[1]  V. Rubtsov,et al.  Isomonodromic Deformations: Confluence, Reduction and Quantisation , 2023, Communications in Mathematical Physics.

[2]  John Harnad,et al.  Tau Functions and their Applications , 2021 .

[3]  Robert Conte,et al.  The Painlevé Handbook , 2020, Mathematical Physics Studies.

[4]  P. Boalch Symplectic Manifolds and Isomonodromic Deformations. , 2020, 2002.00052.

[5]  A. Its,et al.  On Some Hamiltonian Properties of the Isomonodromic Tau Functions , 2018, Reviews in Mathematical Physics.

[6]  O. Lisovyy,et al.  Monodromy dependence and connection formulae for isomonodromic tau functions , 2016, 1604.03082.

[7]  Daisuke Yamakawa Tau functions and Hamiltonians of isomonodromic deformations , 2017 .

[8]  O. Lisovyy,et al.  Fredholm Determinant and Nekrasov Sum Representations of Isomonodromic Tau Functions , 2016, 1608.00958.

[9]  Lena Vogler,et al.  The Direct Method In Soliton Theory , 2016 .

[10]  D. Guzzetti A Review of the Sixth Painlevé Equation , 2012, 1210.0311.

[11]  O. Lisovyy,et al.  Isomonodromic Tau-Functions from Liouville Conformal Blocks , 2014, 1401.6104.

[12]  O. Lisovyy,et al.  Conformal field theory of Painlevé VI , 2012, 1207.0787.

[13]  P. Boalch Simply-laced isomonodromy systems , 2011, 1107.0874.

[14]  John Harnad,et al.  Random Matrices, Random Processes and Integrable Systems , 2011 .

[15]  O. Lisovyy,et al.  Algebraic solutions of the sixth Painleve equation , 2008, 0809.4873.

[16]  J. Hurtubise On the geometry of isomonodromic deformations , 2008, 0804.0249.

[17]  D. Guzzetti The logarithmic asymptotics of the sixth Painlevé equation , 2008, 0801.1157.

[18]  M. Mazzocco,et al.  The Hamiltonian structure of the second Painlevé hierarchy , 2006, nlin/0610066.

[19]  N. Woodhouse Duality for the general isomonodromy problem , 2006, nlin/0601003.

[20]  B. Eynard,et al.  Semiclassical Orthogonal Polynomials, Matrix Models and Isomonodromic Tau Functions , 2004, nlin/0410043.

[21]  M. Y. Mo,et al.  Isomonodromic deformation of resonant rational connections , 2005, nlin/0510011.

[22]  P. Boalch The fifty-two icosahedral solutions to Painlevé VI , 2004, math/0406281.

[23]  S. Oblezin Discrete Symmetries of Systems of Isomonodromic Deformations of Second-Order Fuchsian Differential Equations , 2004 .

[24]  P. Boalch From Klein to Painlevé Via Fourier, Laplace and Jimbo , 2003, math/0308221.

[25]  B. Eynard,et al.  Differential Systems for Biorthogonal Polynomials Appearing in 2-Matrix Models and the Associated Riemann–Hilbert Problem , 2002, nlin/0208002.

[26]  B. Eynard,et al.  Partition functions for matrix models and isomonodromic tau functions , 2002, nlin/0204054.

[27]  P. Boalch Quasi-Hamiltonian geometry of meromorphic connections , 2002, math/0203161.

[28]  Alexander Its,et al.  Isomonodromic Deformations and Applications in Physics , 2002 .

[29]  N. Woodhouse The Symplectic and twistor geometry of the general isomonodromic deformation problem , 2000, nlin/0007024.

[30]  J. Harnad On the Bilinear Equations for Fredholm Determinants Appearing in Random Matrices , 1999, solv-int/9906004.

[31]  Monica Ugaglia On a Poisson structure on the space of stokes matrices , 1999, math/9902045.

[32]  N. Hitchin Geometrical aspects of Schlesinger's equation , 1997 .

[33]  N. Joshi The Second Painlevé Equation in the Large‐parameter Limit I: Local Asymptotic Analysis , 1997, solv-int/9710022.

[34]  J. Harnad,et al.  R‐matrix construction of electromagnetic models for the Painlevé transcendents , 1994, hep-th/9406077.

[35]  A. Fokas,et al.  On the asymptotic analysis of the Painlevé equations via the isomonodromy method , 1994 .

[36]  J. Harnad Dual isomonodromic deformations and moment maps to loop algebras , 1993, hep-th/9301076.

[37]  J. Harnad Isospectral flow and Liouville-Arnold integration in loop algebrast , 1993, hep-th/9306127.

[38]  C. Tracy,et al.  Hamiltonian Structure of Equations Appearing in Random Matrices , 1993, hep-th/9301051.

[39]  M. R. Adams,et al.  Darboux coordinates and Liouville-Arnold integration in loop algebras , 1992, hep-th/9210089.

[40]  M. Kruskal,et al.  The Painlevé Connection Problem: An Asymptotic Approach. I , 1992 .

[41]  岩崎 克則,et al.  From Gauss to Painlevé : a modern theory of special functions : dedicated to Tosihusa Kimura , 1991 .

[42]  M. R. Adams,et al.  Dual moment maps into loop algebras , 1990 .

[43]  渋谷 泰隆 Linear differential equations in the complex domain : problems of analytic continuation , 1990 .

[44]  M. R. Adams,et al.  Isospectral hamiltonian flows in finite and infinite dimensions , 1988 .

[45]  M. Semenov-Tian-Shansky,et al.  Compatible poisson structures for lax equations: An r-matrix approach , 1988 .

[46]  Kazuo Okamoto Studies on the Painleve equations II , 1987 .

[47]  Kazuo Okamoto Studies on the Painlevé equations , 1986 .

[48]  Alexander Its,et al.  Isomonodromic Deformation Method in the Theory of Painleve Equations , 1986 .

[49]  G. Segal,et al.  Loop groups and equations of KdV type , 1985 .

[50]  M. A. Semenov-Tyan-Shanskii What is a classical r-matrix? , 1983 .

[51]  Mikio Sato Soliton Equations as Dynamical Systems on Infinite Dimensional Grassmann Manifold , 1983 .

[52]  A. Newell,et al.  The Inverse Monodromy Transform is a Canonical Transformation , 1982 .

[53]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .

[54]  M. Jimbo,et al.  Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II , 1981 .

[55]  Boris Dubrovin,et al.  Theta functions and non-linear equations , 1981 .

[56]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function , 1981 .

[57]  P. Moerbeke,et al.  Completely Integrable Systems, Euclidean Lie-algebras, and Curves , 1980 .

[58]  P. Moerbeke,et al.  Linearization of Hamiltonian systems, Jacobi varieties and representation theory☆ , 1980 .

[59]  A. Newell,et al.  Monodromy- and spectrum-preserving deformations I , 1980 .

[60]  Kazuo Okamoto,et al.  Polynomial Hamiltonians associated with Painlevé equations, I , 1980 .

[61]  Werner Balser,et al.  Birkhoff invariants and stokes' multipliers for meromorphic linear differential equations , 1979 .

[62]  Igor Krichever,et al.  METHODS OF ALGEBRAIC GEOMETRY IN THE THEORY OF NON-LINEAR EQUATIONS , 1977 .

[63]  M. Gaudin Diagonalisation d'une classe d'hamiltoniens de spin , 1976 .

[64]  V. Matveev,et al.  Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg-de Vries equation , 1975 .

[65]  Tosio Kato Perturbation theory for linear operators , 1966 .

[66]  R. Garnier Solution du problème de Riemann pour les systèmes différentiels linéaires du second ordre , 1926 .

[67]  Par M. Rene Garnier Sur une classe de systèmes différentiels abéliens déduits de la théorie des équations linéaires , 1919 .

[68]  R. Garnier Étude de l'intégrale générale de l'équation VI de M. Painlevé dans le voisinage de ses singularités transcendantes , 1917 .

[69]  G. Birkhoff The Generalized Riemann Problem for Linear Differential Equations and the Allied Problems for Linear Difference and q-Difference Equations , 1913 .

[70]  L. Schlesinger Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten. , 1912 .

[71]  René Garnier,et al.  Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes , 1912 .

[72]  R. Fuchs Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen , 1911 .

[73]  P. Painlevé,et al.  Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme , 1902 .

[74]  P. Painlevé,et al.  Mémoire sur les équations différentielles dont l'intégrale générale est uniforme , 1900 .

[75]  E. Vessiot Sur quelques équations différentielles ordinaires du second ordre , 1895 .