A Review of Extreme Value Threshold Estimation and Uncertainty Quantification

• The last decade has seen development of a plethora of approaches for threshold estimation in extreme value applications. From a statistical perspective, the threshold is loosely defined such that the population tail can be well approximated by an extreme value model (e.g., the generalised Pareto distribution), obtaining a balance between the bias due to the asymptotic tail approximation and parameter estimation uncertainty due to the inherent sparsity of threshold excess data. This paper reviews recent advances and some traditional approaches, focusing on those that provide quantification of the associated uncertainty on inferences (e.g., return level estimation).

[1]  M. Ivette Gomes,et al.  The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction , 2001 .

[2]  Holger Drees,et al.  Refined Pickands estimators of the extreme value index , 1995 .

[3]  A. Frigessi,et al.  A Dynamic Mixture Model for Unsupervised Tail Estimation without Threshold Selection , 2002 .

[4]  Anna Elizabeth MacDonald,et al.  Extreme value mixture modelling with medical and industrial applications. , 2011 .

[5]  Les Oxley,et al.  Extreme value modelling for forecasting market crisis impacts , 2010 .

[6]  Bayesian Extreme Value Mixture Modelling for Estimating VaR , 2009 .

[7]  Philippe Naveau,et al.  A statistical rainfall‐runoff mixture model with heavy‐tailed components , 2009 .

[8]  Stuart G. Coles,et al.  Bayesian methods in extreme value modelling: a review and new developments. , 1996 .

[9]  M. I. Fraga Alves,et al.  A Location Invariant Hill-Type Estimator , 2001 .

[10]  D. Gamerman,et al.  Bayesian analysis of extreme events with threshold estimation , 2004 .

[11]  Yoshua Bengio,et al.  A hybrid Pareto model for asymmetric fat-tailed data: the univariate case , 2009 .

[12]  J. Caers,et al.  Nonparametric tail estimation using a double bootstrap method , 1998 .

[13]  D. Dupuis Exceedances over High Thresholds: A Guide to Threshold Selection , 1999 .

[14]  J. Teugels,et al.  Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnostics , 1996 .

[15]  L. Haan,et al.  Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation , 2000 .

[16]  Julian Stander,et al.  Automated threshold selection methods for extreme wave analysis , 2009 .

[17]  Jan Beirlant,et al.  LINKING PARETO-TAIL KERNEL GOODNESS-OF-FIT STATISTICS WITH TAIL INDEX AT OPTIMAL THRESHOLD AND SECOND ORDER ESTIMATION , 2008 .

[18]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[19]  P. Hall On Some Simple Estimates of an Exponent of Regular Variation , 1982 .

[20]  Armelle Guillou,et al.  A diagnostic for selecting the threshold in extreme value analysis , 2001 .

[21]  A. O'Hagan,et al.  Accounting for threshold uncertainty in extreme value estimation , 2006 .

[22]  S. Resnick,et al.  Smoothing the Hill estimator , 1997 .

[23]  W. DuMouchel Estimating the Stable Index $\alpha$ in Order to Measure Tail Thickness: A Critique , 1983 .

[24]  H. Drees Optimal rates of convergence for estimates of the extreme value index , 1998 .

[25]  C. Robert Discretization and Mcmc Convergence Assessment , 1998 .

[26]  P. Hall,et al.  Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .

[27]  A. Dekkers,et al.  Optimal choice of sample fraction in extreme-value estimation , 1993 .

[28]  K. F. Turkman,et al.  A Predictive Approach to Tail Probability Estimation , 2001 .

[29]  Stefano Cabras,et al.  Extreme value analysis within a parametric outlier detection framework , 2006 .

[30]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[31]  Dani Gamerman,et al.  A semiparametric Bayesian approach to extreme value estimation , 2012, Stat. Comput..

[32]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[33]  Peter Hall,et al.  On the estimation of extreme tail probabilities , 1997 .

[34]  Stefano Cabras,et al.  An Objective Bayesian approach for threshold estimation in the Peaks Over the Threshold model. , 2009 .

[35]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[36]  Xin Zhao Extreme value modelling with application in finance and neonatal research , 2010 .

[37]  J. Hüsler,et al.  Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields , 2007 .

[38]  L. Haan,et al.  On optimising the estimation of high quantiles of a probability distribution , 2003 .

[39]  Holger Rootzén,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[40]  Hedibert Freitas Lopes,et al.  Data driven estimates for mixtures , 2004, Comput. Stat. Data Anal..

[41]  Cláudia Neves,et al.  Reiss and Thomas' automatic selection of the number of extremes , 2004, Comput. Stat. Data Anal..

[42]  Philippe Naveau,et al.  Stochastic downscaling of precipitation: From dry events to heavy rainfalls , 2007 .

[43]  Sidney I. Resnick,et al.  How to make a Hill Plot , 2000 .

[44]  L. Haan,et al.  Residual Life Time at Great Age , 1974 .

[45]  Edgar Kaufmann,et al.  Selecting the optimal sample fraction in univariate extreme value estimation , 1998 .

[46]  Yoshua Bengio,et al.  A Hybrid Pareto Mixture for Conditional Asymmetric Fat-Tailed Distributions , 2009, IEEE Transactions on Neural Networks.

[47]  J. Gonzalo,et al.  Which Extreme Values Are Really Extreme , 2004 .

[48]  Richard L. Smith,et al.  Models for exceedances over high thresholds , 1990 .

[49]  M. I. Fraga Alves A Location Invariant Hill-Type Estimator , 2001 .

[50]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[51]  G. Russell,et al.  A flexible extreme value mixture model , 2011, Comput. Stat. Data Anal..

[52]  Sidney I. Resnick,et al.  Heavy Tail Modelling and Teletraffic Data , 1995 .

[53]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[54]  Jan Beirlant,et al.  Tail Index Estimation and an Exponential Regression Model , 1999 .

[55]  Nicole A. Lazar,et al.  Statistics of Extremes: Theory and Applications , 2005, Technometrics.

[56]  Alan T. K. Wan,et al.  Testing for covariance stationarity of stock returns in the presence of structural breaks: an intervention analysis , 2002 .

[57]  Alan H. Welsh,et al.  Adaptive Estimates of Parameters of Regular Variation , 1985 .

[58]  Der-Chen Lin,et al.  Parameter Estimation for Generalized Pareto Distribution , 1988 .

[59]  E. McKenzie,et al.  Testing for covariance stationarity in the UK all-equity returns , 1999 .

[60]  M. Parlange,et al.  Statistics of extremes in hydrology , 2002 .

[61]  P. Phillips,et al.  Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets , 1994 .

[62]  S. Resnick Heavy tail modeling and teletraffic data: special invited paper , 1997 .

[63]  Peter Hall,et al.  Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems , 1990 .

[64]  S. Kotz,et al.  Parameter estimation of the generalized Pareto distribution—Part II , 2010 .