Weyl-Titchmarsh Theory for Hamiltonian Dynamic Systems

We establish the Weyl-Titchmarsh theory for singular linear Hamiltonian dynamic systems on a time scale 𝕋, which allows one to treat both continuous and discrete linear Hamiltonian systems as special cases for 𝕋=ℝ and 𝕋=ℤ within one theory and to explain the discrepancies between these two theories. This paper extends the Weyl-Titchmarsh theory and provides a foundation for studying spectral theory of Hamiltonian dynamic systems. These investigations are part of a larger program which includes the following: (i) M(λ) theory for singular Hamiltonian systems, (ii) on the spectrum of Hamiltonian systems, (iii) on boundary value problems for Hamiltonian dynamic systems.

[1]  C. Remling Geometric Characterization of Singular Self-Adjoint Boundary Conditions for Hamiltonian Systems , 1996 .

[2]  Jacob T. Schwartz,et al.  Linear operators. Part II. Spectral theory , 2003 .

[3]  Shurong Sun,et al.  The Glazman-Krein-Naimark theory for a class of discrete hamiltonian systems , 2007 .

[4]  G. Weiss,et al.  EIGENFUNCTION EXPANSIONS. Associated with Second-order Differential Equations. Part I. , 1962 .

[5]  Philip W. Walker A Vector-Matrix Formulation for Formally Symmetric Ordinary Differential Equations with Applications to Solutions of Integrable Square , 1974 .

[6]  A. Peterson,et al.  Advances in Dynamic Equations on Time Scales , 2012 .

[7]  A. Peterson,et al.  Dynamic Equations on Time Scales: An Introduction with Applications , 2001 .

[8]  D. Hinton,et al.  Titchmarsh's λ-dependent boundary conditions for Hamiltonian systems , 1982 .

[9]  A. Boumenir,et al.  The interpolation of the Titchmarsh-Weyl function , 2007 .

[10]  Ravi P. Agarwal,et al.  Dynamic equations on time scales: a survey , 2002 .

[11]  Geometric aspects of Sturm—Liouville problems I. Structures on spaces of boundary conditions , 2000, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[12]  Steve Clark,et al.  On Weyl-Titchmarsh theory for singular finite difference Hamiltonian systems , 2003, math/0312177.

[13]  J. K. Shaw,et al.  Hamiltonian systems of limit point or limit circle type with both endpoints singular , 1983 .

[14]  Martin Bohner,et al.  AN EIGENVALUE PROBLEM FOR LINEAR HAMILTONIAN DYNAMIC SYSTEMS , 2005 .

[15]  Allan M. Krall,et al.  M (λ) theory for singular Hamiltonian systems with two singular points , 1989 .

[16]  Steve Clark,et al.  Weyl-titchmarsh M -function Asymptotics for Matrix-valued Schr¨odinger Operators , 2022 .

[17]  F. V. Atkinson,et al.  Discrete and Continuous Boundary Problems , 1964 .

[18]  Martin Bohner,et al.  Hamiltonian Systems on Time Scales , 2000 .

[19]  Michael Plum,et al.  Titchmarsh–Sims–Weyl Theory for Complex Hamiltonian Systems , 2003 .

[20]  Martin Bohner,et al.  Sturmian and spectral theory for discrete symplectic systems , 2009 .

[21]  Allan M. Krall,et al.  Hilbert space, boundary value problems, and orthogonal polynomials , 2002 .

[22]  A. Peterson,et al.  Dynamic Equations on Time Scales , 2001 .

[23]  Ravi P. Agarwal,et al.  Time scale systems on infinite intervals , 2001 .

[24]  Discrete Linear Hamiltonian Systems: A Survey , 1999 .

[25]  Shaozhu Chen,et al.  GKN theory for linear Hamiltonian systems , 2006, Appl. Math. Comput..

[26]  Yuming Shi On the rank of the matrix radius of the limiting set for a singular linear Hamiltonian system , 2004 .

[27]  Werner Kratz,et al.  Quadratic Functionals in Variational Analysis and Control Theory , 1995 .

[28]  Jiangang Qi Non-limit-circle criteria for singular Hamiltonian differential systems , 2005 .

[29]  C. Ahlbrandt,et al.  Linear Hamiltonian Difference Systems : Disconjugacy and Jacobi-Type Conditions , 1996 .

[30]  H. Weyl,et al.  Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen , 1910 .

[31]  Jiangang Qi,et al.  Strong limit-point classification of singular Hamiltonian expressions , 2004 .

[32]  Yuming Shi,et al.  Weyl–Titchmarsh theory for a class of discrete linear Hamiltonian systems , 2006 .

[33]  Yuming Shi Spectral theory of discrete linear Hamiltonian systems , 2004 .

[34]  J. K. Shaw,et al.  On Boundary Value Problems for Hamiltonian Systems with Two Singular Points , 1984 .

[35]  J. K. Shaw,et al.  On Titchmarsh-Weyl M(λ)-functions for linear Hamiltonian systems , 1981 .

[36]  J. K. Shaw,et al.  ON THE SPECTRUM OF A SINGULAR HAMILTONIAN SYSTEM , 1982 .

[37]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .