Selection of wire electrical discharge machining process parameters using non-traditional optimization algorithms

Selection of the optimal values of different process parameters, such as pulse duration, pulse frequency, duty factor, peak current, dielectric flow rate, wire speed, wire tension, effective wire offset of wire electrical discharge machining (WEDM) process is of utmost importance for enhanced process performance. The major performance measures of WEDM process generally include material removal rate, cutting width (kerf), surface roughness and dimensional shift. Although different mathematical techniques, like artificial neural network, gray relational analysis, simulated annealing, desirability function, Pareto optimality approach, etc. have already been applied for searching out the optimal parametric combinations of WEDM processes, but in most of the cases, sub-optimal or near-optimal solutions have been arrived at. In this paper, an attempt is made to apply six most popular population-based non-traditional optimization algorithms, i.e. genetic algorithm, particle swarm optimization, sheep flock algorithm, ant colony optimization, artificial bee colony and biogeography-based optimization for single and multi-objective optimization of two WEDM processes. The performance of these algorithms is also compared and it is observed that biogeography-based optimization algorithm outperforms the others.

[1]  Tao Yu,et al.  Reliable multi-objective optimization of high-speed WEDM process based on Gaussian process regression , 2008 .

[2]  Yunn-Shiuan Liao,et al.  Optimization of machining parameters of Wire-EDM based on Grey relational and statistical analyses , 2003 .

[3]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[4]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[5]  R. Ramakrishnan,et al.  Multi response optimization of wire EDM operations using robust design of experiments , 2006 .

[6]  S. Chakraborty,et al.  Selection of EDM Process Parameters Using Biogeography-Based Optimization Algorithm , 2012 .

[7]  Ivanoe De Falco,et al.  Facing classification problems with Particle Swarm Optimization , 2007, Appl. Soft Comput..

[8]  Koichi Nara,et al.  A new evolutionary algorithm based on sheep flocks heredity model and its application to scheduling problem , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[9]  K. Chiang,et al.  Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using grey relational analysis , 2006 .

[10]  Oscar Castillo,et al.  An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms , 2011, Appl. Soft Comput..

[11]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[12]  Bijoy Bhattacharyya,et al.  Modeling and optimization of wire electrical discharge machining of γ-TiAl in trim cutting operation , 2008 .

[13]  B. Bhattacharyya,et al.  Parametric analysis and optimization of wire electrical discharge machining of γ-titanium aluminide alloy , 2005 .

[14]  Hyunchul Kim,et al.  A new evolutionary algorithm based on sheep flocks heredity model , 2001, 2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (IEEE Cat. No.01CH37233).

[15]  Shahin Rahimifard,et al.  STATE OF THE ART IN WIRE ELECTRICAL DISCHARGE MACHINING (WEDM) , 2004 .

[16]  Bijoy Bhattacharyya,et al.  Modeling and analysis of white layer depth in a wire-cut EDM process through response surface methodology , 2005 .

[17]  Neelesh Kumar Jain,et al.  Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms , 2007 .

[18]  Trevor A Spedding,et al.  Study on modeling of wire EDM process , 1997 .

[19]  P. J. Pawar,et al.  Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms , 2010, Appl. Soft Comput..

[20]  Kamlakar P Rajurkar,et al.  Analysis and optimization of parameter combinations in wire electrical discharge machining , 1991 .

[21]  P. J. Pawar,et al.  Modelling and optimization of process parameters of wire electrical discharge machining , 2009 .

[22]  T. A. El-Taweel,et al.  Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM , 2005 .

[23]  Nitin V. Afzulpurkar,et al.  Optimization of tile manufacturing process using particle swarm optimization , 2011, Swarm Evol. Comput..

[24]  T. Saaty,et al.  The Analytic Hierarchy Process , 1985 .

[25]  R. Saravanan,et al.  Optimization of multi-pass turning operations using ant colony system , 2003 .

[26]  Kalyanmoy Deb,et al.  Optimization for Engineering Design: Algorithms and Examples , 2004 .

[27]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[28]  G. A. Vijayalakshmi Pai,et al.  Ant Colony Optimization based approach for efficient packet filtering in firewall , 2010, Appl. Soft Comput..

[29]  M. S. Shunmugam,et al.  Multi-objective optimization of wire-electro discharge machining process by Non-Dominated Sorting Genetic Algorithm , 2005 .

[30]  Kuang-Yuan Kung,et al.  Modeling and Analysis of Machinability Evaluation in the Wire Electrical Discharge Machining (WEDM) Process of Aluminum Oxide-Based Ceramic , 2008 .

[31]  S. Mitra,et al.  Wire electrical discharge machining of gamma titanium aluminide for optimum process criteria yield in single pass cutting operation , 2005, Int. J. Manuf. Technol. Manag..

[32]  Vijay K. Jain,et al.  Advanced Machining Processes , 2014 .

[33]  Dan Simon,et al.  Analytical and numerical comparisons of biogeography-based optimization and genetic algorithms , 2011, Inf. Sci..

[34]  João Paulo Davim,et al.  Multiobjective Optimization of Grinding Process Parameters Using Particle Swarm Optimization Algorithm , 2010 .

[35]  Sandeep Grover,et al.  Optimization of multiple-machining characteristics in wire electrical discharge machining of punching die using Grey relational analysis , 2010 .

[36]  Chih-Hung Tsai,et al.  Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach , 2010, Expert Syst. Appl..

[37]  Amar Patnaik,et al.  Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method , 2007 .

[38]  Shankar Chakraborty,et al.  Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm , 2011, Eng. Appl. Artif. Intell..

[39]  Maghsud Solimanpur,et al.  An ant algorithm for optimization of hole-making operations , 2007, Comput. Ind. Eng..

[40]  Ching-Jong Liao,et al.  An ant colony optimization algorithm for setup coordination in a two-stage production system , 2011, Appl. Soft Comput..

[41]  Trevor A Spedding,et al.  Parametric optimization and surface characterization of wire electrical discharge machining process , 1997 .

[42]  Bijoy Bhattacharyya,et al.  An Integrated Approach to Optimization of WEDM Combining Single-Pass and Multipass Cutting Operation , 2010 .

[43]  Niladri Chakraborty,et al.  Particle swarm optimization technique based short-term hydrothermal scheduling , 2008, Appl. Soft Comput..