Embedding IRT in Structural Equation Models: A Comparison With Regression Based on IRT Scores

This article reviews the problems associated with using item response theory (IRT)-based latent variable scores for analytical modeling, discusses the connection between IRT and structural equation modeling (SEM)-based latent regression modeling for discrete data, and compares regression parameter estimates obtained using predicted IRT scores and standardized number-right scores in Ordinary Least Squares (OLS) regression with regression estimates obtained using the combined IRT-SEM approach. The Monte Carlo results show the expected a posteriori (EA approach is insensitive to sample size as expected but leads to appreciable attenuation in regression parameter estimates. Standardized number-right estimates and EAP regression estimates were found to be highly comparable. On the other hand, the IRT-SEM method produced smaller finite sample bias, and as expected, generated consistent regression estimates for suitably large sample sizes.

[1]  A. Stroud,et al.  Gaussian quadrature formulas , 1966 .

[2]  Ledyard R Tucker,et al.  Relations of factor score estimates to their use , 1970 .

[3]  R. Darrell Bock,et al.  Fitting a response model forn dichotomously scored items , 1970 .

[4]  Anders Christoffersson,et al.  Factor analysis of dichotomized variables , 1975 .

[5]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[6]  G. Masters A rasch model for partial credit scoring , 1982 .

[7]  Frederic M. Lord,et al.  Unbiased estimators of ability parameters, of their variance, and of their parallel-forms reliability , 1983 .

[8]  D. Rubin,et al.  On Jointly Estimating Parameters and Missing Data by Maximizing the Complete-Data Likelihood , 1983 .

[9]  B. Muthén Latent variable structural equation modeling with categorical data , 1983 .

[10]  T. Louis Estimating a population of parameter values using Bayes and empirical Bayes methods , 1984 .

[11]  B. Muthén A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators , 1984 .

[12]  T. A. Warm Weighted likelihood estimation of ability in item response theory , 1989 .

[13]  Bengt Muthen,et al.  Some uses of structural equation modeling in validity studies: Extending IRT to external variables , 1986 .

[14]  Jan de Leeuw,et al.  On the relationship between item response theory and factor analysis of discretized variables , 1987 .

[15]  D. Rubin Multiple imputation for nonresponse in surveys , 1989 .

[16]  Peter M. Bentler,et al.  EQS : structural equations program manual , 1989 .

[17]  Karl G. Jöreskog,et al.  Lisrel 8: User's Reference Guide , 1997 .

[18]  Leigh Burstein,et al.  Instructionally Sensitive Psychometrics: Application of a New IRT‐Based Detection Technique to Mathematics Achievement Test Items , 1991 .

[19]  Aeilko H. Zwinderman,et al.  A generalized rasch model for manifest predictors , 1991 .

[20]  Eugene G. Johnson,et al.  Scaling Procedures in NAEP , 1992 .

[21]  W. Alan Nicewander,et al.  Ability estimation for conventional tests , 1993 .

[22]  H. Hoijtink,et al.  Statistical inference based on latent ability estimates , 1996 .

[23]  Raymond J. Adams,et al.  Multilevel Item Response Models: An Approach to Errors in Variables Regression , 1997 .

[24]  Mark Shevlin,et al.  Summated rating scales. A Monte Carlo investigation of the effects of reliability and collinearity in regression models , 1997 .

[25]  Richard J. Patz,et al.  A Straightforward Approach to Markov Chain Monte Carlo Methods for Item Response Models , 1999 .

[26]  Petter Laake,et al.  Regression among factor scores , 2001 .

[27]  M. Croon Using Predicted Latent Scores in General Latent Struc­ ture M odels , 2002 .