On upgrading the numerics in combustion chemistry codes

[1]  B. Bennett,et al.  Computational and experimental study of axisymmetric coflow partially premixed methane/air flames , 2000 .

[2]  P. I. Barton,et al.  DAEPACK: An Open Modeling Environment for Legacy Models , 2000 .

[3]  L. Petzold,et al.  Sensitivity analysis of differential-algebraic equations: A comparison of methods on a special problem ✩ , 2000 .

[4]  P. I. Barton,et al.  Parametric sensitivity functions for hybrid discrete/continuous systems , 1999 .

[5]  Thomas Kaminski,et al.  Recipes for adjoint code construction , 1998, TOMS.

[6]  C. Westbrook,et al.  A Comprehensive Modeling Study of n-Heptane Oxidation , 1998 .

[7]  W. Fiveland,et al.  Multi-Dimensional Analysis of Turbulent Natural Gas Flames Using Detailed Chemical Kinetics , 1997 .

[8]  P. I. Barton,et al.  Efficient sensitivity analysis of large-scale differential-algebraic systems , 1997 .

[9]  M. Frenklach,et al.  A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames , 1997 .

[10]  Andreas Griewank,et al.  Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++ , 1996, TOMS.

[11]  Paul I. Barton,et al.  State event location in differential-algebraic models , 1996, TOMC.

[12]  S. Lam,et al.  The CSP method for simplifying kinetics , 1994 .

[13]  Richard J. Fateman,et al.  Automatic Differentiation of Algorithms: Theory, Implementation, and Application (Andreas Griewank and George F. Corliss, eds.) , 1993, SIAM Rev..

[14]  Bruce Christianson,et al.  Automatic Hessians by reverse accumulation , 1992 .

[15]  G. D. Byrne,et al.  VODE: a variable-coefficient ODE solver , 1989 .

[16]  L. Petzold,et al.  Numerical methods and software for sensitivity analysis of differential-algebraic systems , 1986 .

[17]  M. Kramer,et al.  Sensitivity Analysis in Chemical Kinetics , 1983 .

[18]  K. E. Hillstrom,et al.  JAKEF: A Portable Symbolic Differentiator of Functions Given by Algorithms , 1982 .

[19]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[20]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[21]  L. Petzold,et al.  Model reduction for chemical kinetics: an optimization approach , 1999 .

[22]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[23]  A. Griewank,et al.  Automatic differentiation of algorithms : theory, implementation, and application , 1994 .

[24]  J. K. Reid,et al.  MA48: A FORTRAN code for direct solution of sparse unsymmetric linear systems of equations , 1993 .

[25]  C. Bischof,et al.  ADIFOR-Generating Derivative Codes from Fortran Programs , 1992 .

[26]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[27]  W. E. Stewart,et al.  Sensitivity analysis of initial value problems with mixed odes and algebraic equations , 1985 .

[28]  N. Peters Numerical and asymptotic analysis of systematically reduced reaction schemes for hydrocarbon flames , 1985 .

[29]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.