A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions

One-dimensional fractional anomalous sub-diffusion equations on an unbounded domain are considered in our work. Beginning with the derivation of the exact artificial boundary conditions, the original problem on an unbounded domain is converted into mainly solving an initial-boundary value problem on a finite computational domain. The main contribution of our work, as compared with the previous work, lies in the reduction of fractional differential equations on an unbounded domain by using artificial boundary conditions and construction of the corresponding finite difference scheme with the help of method of order reduction. The difficulty is the treatment of Neumann condition on the artificial boundary, which involves the time-fractional derivative operator. The stability and convergence of the scheme are proven using the discrete energy method. Two numerical examples clarify the effectiveness and accuracy of the proposed method.

[1]  Houde Han The Artificial Boundary Method—Numerical Solutions of Partial Differential Equations on Unbounded Domains , 2006 .

[2]  Xiaonan Wu,et al.  A finite-difference method for the one-dimensional time-dependent schrödinger equation on unbounded domain , 2005 .

[3]  O. Agrawal Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain , 2002 .

[4]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[5]  Zaid M. Odibat,et al.  Rectangular decomposition method for fractional diffusion-wave equations , 2006, Appl. Math. Comput..

[6]  Houde Han,et al.  Exact and approximating boundary conditions for the parabolic problems on unbounded domains , 2002 .

[7]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[8]  F. Mainardi The fundamental solutions for the fractional diffusion-wave equation , 1996 .

[9]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[10]  X. H. Zhang,et al.  Finite domain anomalous spreading consistent with first and second laws , 2009, 0911.1192.

[11]  Pankaj Kumar,et al.  An approximate method for numerical solution of fractional differential equations , 2006, Signal Process..

[12]  I. Turner,et al.  A fractional-order implicit difference approximation for the space-time fractional diffusion equation , 2006 .

[13]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[14]  Santos B. Yuste,et al.  An Explicit Difference Method for Solving Fractional Diffusion and Diffusion-Wave Equations in the Caputo Form , 2011 .

[15]  R. Gorenflo,et al.  Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .

[16]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[17]  Ludwig W. Dorodnicyn Artificial Boundary Conditions for High-Accuracy Aeroacoustic Algorithms , 2010 .

[18]  J. P. Roop Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .

[19]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[20]  Christophe Besse,et al.  Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations , 2006, SIAM J. Numer. Anal..

[21]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[22]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[23]  Xianjuan Li,et al.  Finite difference/spectral approximations for the fractional cable equation , 2010, Math. Comput..

[24]  Zhi‐zhong Sun,et al.  A compact difference scheme for the fractional diffusion-wave equation , 2010 .

[25]  Naima Hamidi,et al.  FRACTIONAL ORDER DIFFERENTIAL INCLUSIONS ON THE HALF-LINE , 2010 .

[26]  Wei Jiang,et al.  Approximate solution of the fractional advection-dispersion equation , 2010, Comput. Phys. Commun..

[27]  Fawang Liu,et al.  Implicit difference approximation for the time fractional diffusion equation , 2006 .

[28]  Feng-Hui Huang,et al.  Analytical Solution for the Time-Fractional Telegraph Equation , 2009, J. Appl. Math..

[29]  S. Wearne,et al.  Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions , 2009, Journal of mathematical biology.

[30]  Zhi-zhong Sun,et al.  The stability and convergence of an explicit difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions , 2006, J. Comput. Phys..

[31]  Juan J. Nieto,et al.  Fractional order differential equations on an unbounded domain , 2010 .

[32]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[33]  Shaher Momani,et al.  The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics , 2009, Comput. Math. Appl..

[34]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[35]  Hong Wang,et al.  A fast characteristic finite difference method for fractional advection–diffusion equations , 2011 .

[36]  Yin,et al.  NUMERICAL SOLUTIONS OF PARABOLIC PROBLEMS ON UNBOUNDED 3-D SPATIAL DOMAIN , 2005 .

[37]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[38]  Hermann Brunner,et al.  The numerical solution of parabolic Volterra integro-differential equations on unbounded spatial domains , 2005 .

[39]  Ravi P. Agarwal,et al.  Boundary Value Problems for Differential Equations Involving Riemann-Liouville Fractional Derivative on the Half-Line , 2011 .

[40]  H. R. Hicks,et al.  Numerical methods for the solution of partial difierential equations of fractional order , 2003 .

[41]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[42]  Renio S. Mendes,et al.  Fractional diffusion equation with an absorbent term and a linear external force: Exact solution , 2007 .

[43]  Houde Han,et al.  An analysis of the finite-difference method for one-dimensional Klein--Gordon equation on unbounded domain , 2009 .

[44]  Fawang Liu,et al.  Finite difference approximations for the fractional Fokker–Planck equation , 2009 .

[45]  S. Tsynkov Numerical solution of problems on unbounded domains. a review , 1998 .

[46]  I. Podlubny Fractional differential equations , 1998 .

[47]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[48]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[49]  Christophe Besse,et al.  A Review of Transparent and Artificial Boundary Conditions Techniques for Linear and Nonlinear Schrödinger Equations , 2008 .

[50]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[51]  Maria Specovius-Neugebauer,et al.  Artificial Boundary Conditions for the Stokes and Navier–Stokes Equations in Domains that are Layer-Like at Infinity , 2008 .

[52]  Zhi-Zhong Sun,et al.  The stability and convergence of a difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions , 2006, J. Comput. Phys..

[53]  Houde Han,et al.  A class of artificial boundary conditions for heat equation in unbounded domains , 2002 .

[54]  Ahmet Yildirim,et al.  Analytical approach to Fokker–Planck equation with space- and time-fractional derivatives by means of the homotopy perturbation method , 2010 .

[55]  Ahmed M. A. El-Sayed,et al.  Adomian's decomposition method for solving an intermediate fractional advection-dispersion equation , 2010, Comput. Math. Appl..

[56]  Fawang Liu,et al.  Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation , 2010, SIAM J. Sci. Comput..

[57]  R. Gorenflo,et al.  Analytical properties and applications of the Wright function , 2007, math-ph/0701069.

[58]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[59]  X. Li,et al.  Existence and Uniqueness of the Weak Solution of the Space-Time Fractional Diffusion Equation and a Spectral Method Approximation , 2010 .

[60]  Xiaonan Wu,et al.  Convergence of difference scheme for heat equation in unbounded domains using artificial boundary conditions , 2004 .

[61]  Hermann Brunner,et al.  Artificial boundary conditions for parabolic Volterra integro-differential equations on unbounded two-dimensional domains , 2006 .

[62]  Santos B. Yuste,et al.  On three explicit difference schemes for fractional diffusion and diffusion-wave equations , 2009 .

[63]  Shaher Momani,et al.  Homotopy perturbation method for nonlinear partial differential equations of fractional order , 2007 .

[64]  Om P. Agrawal,et al.  A general solution for a fourth-order fractional diffusion–wave equation defined in a bounded domain , 2001 .

[65]  Fawang Liu,et al.  An implicit RBF meshless approach for time fractional diffusion equations , 2011 .