Conversion of Fly Ash into Mesoporous Aluminosilicate

Mesoporous aluminosilicate in the hexagonal phase (MCM-41) has been synthesized from fused fly ash solutions and cationic cetyltrimethylammonium bromide (CTAB) surfactants. The authors provide direct evidence that an MCM-41 aluminosilicate with a homogeneous chemical composition of Si/Al = 13.4 can be prepared with cationic surfactant. Results indicate that coal combustion byproducts can be utilized for producing mesoporous molecular sieves even though they contain significant amounts of impurities.

[1]  W. Shih,et al.  A general method for the conversion of fly ash into zeolites as ion exchangers for cesium , 1998 .

[2]  Kenneth M. Kemner,et al.  Functionalized Monolayers on Ordered Mesoporous Supports , 1997 .

[3]  Mark E. Davis,et al.  Synthesis of Pure Alumina Mesoporous Materials. , 1996 .

[4]  W. Shih,et al.  Conversion of fly ash into zeolites for ion-exchange applications , 1996 .

[5]  A. Sayari Catalysis by Crystalline Mesoporous Molecular Sieves , 1996 .

[6]  Gao Qing Lu,et al.  Advances in mesoporous molecular sieve MCM-41 , 1996 .

[7]  Chunshan Song,et al.  Synthesis of mesoporous molecular sieves: influence of aluminum source on Al incorporation in MCM-41 , 1996 .

[8]  A. Tuel,et al.  Synthesis and Characterization of Trivalent Metal Containing Mesoporous Silicas Obtained by a Neutral Templating Route , 1996 .

[9]  V. Hooff,et al.  Aluminum incorporation in MCM-41 mesoporous molecular sieves , 1995 .

[10]  A. Clearfield,et al.  Synthesis of aluminum rich MCM-41 , 1995 .

[11]  J. Klinowski,et al.  Mesopore Molecular Sieve MCM‐41 Containing Framework Aluminum. , 1995 .

[12]  H. V. Bekkum,et al.  MCM-41 type materials with low Si/Al ratios , 1995 .

[13]  P. Tanev,et al.  Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds , 1994, Nature.

[14]  Pierre M. Petroff,et al.  Generalized synthesis of periodic surfactant/inorganic composite materials , 1994, Nature.

[15]  Mark E. Davis,et al.  Studies on mesoporous materialsI. Synthesis and characterization of MCM-41 , 1993 .

[16]  N. Shigemoto,et al.  Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction , 1993, Journal of Materials Science.

[17]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[18]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[19]  M. Grutzeck,et al.  Zeolite Formation in Class F Fly Ash Blended Cement Pastes , 1992 .

[20]  A. Yoshida,et al.  Formation of faujasite-type zeolite from ground Shirasu volcanic glass , 1986 .

[21]  Hsiao-Lan Chang Chemical conversion of coal waste to micro-meso porous aluminosilicate materials , 1997 .

[22]  G. Millar,et al.  Synthesis and characterization of highly ordered MCM-41 in an alkali-free system and its catalytic activity , 1996 .

[23]  T. Kijima,et al.  Synthesis and deorganization of an aluminium–based dodecyl sulfate mesophase with a hexagonal structure , 1996 .

[24]  R. Mokaya,et al.  Synthesis of acidic aluminosilicate mesoporous molecular sieves using primary amines , 1996 .

[25]  G. Stucky,et al.  Aluminum Incorporation in Mesoporous Molecular Sieves , 1994 .

[26]  W. Shih,et al.  Conversion of Class-F Fly Ash to Zeolites , 1994 .

[27]  W. Hillebrand,et al.  Applied inorganic analysis , 1929 .