Interleaved Object Categorization and Segmentation

This thesis is concerned with the problem of visual object categorization, that is of reeognizing unseen-before objects, localizing them in cluttered real-worid images, and assigning the correct category label. This capability is one of the core compe¬ tencies of the human visual system. Yet, Computer vision Systems are still far from reaching a comparable level of Performance.Moreover,Computer visionresearch has in the past mainly focused on the simpler and more specific problem of identifying known objects under novel viewing conditions. The visual categorization problem is closely linked to the task of figure-ground segmentation, that is of dividing the image into an object and a non-objeet part. Historically, figure-ground segmentation has often been seen as an important and even necessary preprocessing step for object recognition. However, purely bottomup approacheshave so far been unable to yield segmentationsof sufficient quality, so that most current recognition approacheshave been designed to work independently from segmentation. In contrast,this thesis considers object categorization and figure-ground segmen¬ tation as two interleaved processes that closely collaborate towards a common goal. The core part of our work is a probabilisticformulation which integrates both capabilities into a common framework. As shown in our experiments, the tight coupling between those two processes allows them to profit from each other and improve their individual Performances. The resulting approach can detect categorical objects in novel images and automatically compute a segmentationfor them. This segmenta¬ tion is then used to again improve recognition by allowing the System to focus its effort on object pixels and discard misleading influencesfrom the background. In addition to improving the recognition Performance for individual hypotheses, the top-down segmentation also allows to determine exactly from where a hypoth¬ esis draws its support. We use this information to design a hypothesis verification stage based on the MDL principle that resolves ambiguities between overlapping hypotheseson a per-pixel level and factorsout the effects of partialocclusion. Altogether, this procedureconstitutes a novel mechanismin object detection that allows to analyze scenes containing multiple objects in a principled manner. Our results show that it presents an improvement over conventional criteria based on bounding box overlap and permitsmore aecurate aeeeptancedecisions. Our approach is based on a highly flexible implicit representation for object shape that can combine the information of local parts observed on different training exam¬ ples and interpolate between the correspondingobjects. As a result, the proposed method can learn object modeis already from few training examples and achieve competitive object detection Performance with training sets that are between one and two orders of magnitude smaller than those used in comparable Systems. An extensive evaluation on several large data sets shows that the system is applicable to many different object categories, including both rigid and articulated objects.

[1]  Andrew Zisserman,et al.  Object Level Grouping for Video Shots , 2004, International Journal of Computer Vision.

[2]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Ruzena Bajcsy,et al.  Segmentation of range images as the search for geometric parametric models , 1995, International Journal of Computer Vision.

[4]  Christopher M. Brown,et al.  Control of selective perception using bayes nets and decision theory , 1994, International Journal of Computer Vision.

[5]  Hiroshi Murase,et al.  Visual learning and recognition of 3-d objects from appearance , 2005, International Journal of Computer Vision.

[6]  Julia Vogel,et al.  Semantic scene modeling and retrieval , 2004 .

[7]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[8]  Bernt Schiele,et al.  Scale-Invariant Object Categorization Using a Scale-Adaptive Mean-Shift Search , 2004, DAGM-Symposium.

[9]  Ales Leonardis,et al.  Visual learning and recognition of a probabilistic spatio-temporal model of cyclic human locomotion , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[10]  Andrew Zisserman,et al.  Video data mining using configurations of viewpoint invariant regions , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[11]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[12]  H. Schneiderman Feature-centric evaluation for efficient cascaded object detection , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[13]  Barbara Caputo,et al.  Cue integration through discriminative accumulation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[14]  C. Schmid,et al.  Scale-invariant shape features for recognition of object categories , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[15]  Shimon Ullman,et al.  Combining Top-Down and Bottom-Up Segmentation , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[16]  Shimon Ullman,et al.  Class-Based Matching of Object Parts , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[17]  A. Torralba,et al.  Sharing features: efficient boosting procedures for multiclass object detection , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[18]  Cordelia Schmid,et al.  Human Detection Based on a Probabilistic Assembly of Robust Part Detectors , 2004, ECCV.

[19]  Shimon Ullman,et al.  View-Invariant Recognition Using Corresponding Object Fragments , 2004, ECCV.

[20]  Bill Triggs,et al.  Detecting Keypoints with Stable Position, Orientation, and Scale under Illumination Changes , 2004, ECCV.

[21]  Andrew Zisserman,et al.  An Affine Invariant Salient Region Detector , 2004, ECCV.

[22]  Stefan Carlsson,et al.  Appearance Based Qualitative Image Description for Object Class Recognition , 2004, ECCV.

[23]  Shimon Ullman,et al.  Learning to Segment , 2004, ECCV.

[24]  Peter Auer,et al.  Weak Hypotheses and Boosting for Generic Object Detection and Recognition , 2004, ECCV.

[25]  Takeo Kanade,et al.  Object Detection Using the Statistics of Parts , 2004, International Journal of Computer Vision.

[26]  Antonio Torralba,et al.  Contextual Priming for Object Detection , 2003, International Journal of Computer Vision.

[27]  Jitendra Malik,et al.  Contour and Texture Analysis for Image Segmentation , 2001, International Journal of Computer Vision.

[28]  Tomaso A. Poggio,et al.  A Trainable System for Object Detection , 2000, International Journal of Computer Vision.

[29]  Martin A. Giese,et al.  Morphable Models for the Analysis and Synthesis of Complex Motion Patterns , 2000, International Journal of Computer Vision.

[30]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[31]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[32]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[33]  Hannes Kruppa Object detection using scale specific Boosted parts and a Bayesian combiner , 2004 .

[34]  Bernt Schiele,et al.  Recognition without Correspondence using Multidimensional Receptive Field Histograms , 2004, International Journal of Computer Vision.

[35]  Michael Jones,et al.  Multidimensional Morphable Models: A Framework for Representing and Matching Object Classes , 2004, International Journal of Computer Vision.

[36]  Daniel P. Huttenlocher,et al.  Pictorial Structures for Object Recognition , 2004, International Journal of Computer Vision.

[37]  S. Edelman,et al.  Unsupervised statistical learning in vision : computational principles , biological evidence ∗ , 2004 .

[38]  B. Schiele,et al.  Combined Object Categorization and Segmentation With an Implicit Shape Model , 2004 .

[39]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[40]  R. Rifkin,et al.  Towards Component-based Car Detection , 2004 .

[41]  Shimon Ullman,et al.  Object recognition with informative features and linear classification , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[42]  Pietro Perona,et al.  A Bayesian approach to unsupervised one-shot learning of object categories , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[43]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[44]  Barbara Caputo,et al.  Recognition with local features: the kernel recipe , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[45]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[46]  Cordelia Schmid,et al.  Selection of scale-invariant parts for object class recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[47]  Rainer Lienhart,et al.  Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection , 2003, DAGM-Symposium.

[48]  Cordelia Schmid,et al.  Shape recognition with edge-based features , 2003, BMVC.

[49]  Thomas Vetter,et al.  Face Recognition Based on Fitting a 3D Morphable Model , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Martial Hebert,et al.  Shape-based recognition of wiry objects , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[51]  Stella X. Yu,et al.  Object-specific figure-ground segregation , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[52]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[53]  Cordelia Schmid,et al.  3D object modeling and recognition using affine-invariant patches and multi-view spatial constraints , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[54]  Bernt Schiele,et al.  Analyzing appearance and contour based methods for object categorization , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[55]  Robert T. Collins,et al.  Mean-shift blob tracking through scale space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[56]  James L. Crowley,et al.  Computation of Generic Features for Object Classification , 2003, Scale-Space.

[57]  John K. Tsotsos,et al.  The selective tuning model of attention: psychophysical evidence for a suppressive annulus around an attended item , 2003, Vision Research.

[58]  Christoph von der Malsburg,et al.  1-Click Learning of Object Models for Recognition , 2002, Biologically Motivated Computer Vision.

[59]  Ilan Shimshoni,et al.  Estimating the principal curvatures and the Darboux frame from real 3D range data , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[60]  Matthew A. Brown,et al.  Invariant Features from Interest Point Groups , 2002, BMVC.

[61]  Ali Shokoufandeh,et al.  View-based 3-D object recognition using shock graphs , 2002, Object recognition supported by user interaction for service robots.

[62]  Thomas S. Huang,et al.  Fusion of global and local information for object detection , 2002, Object recognition supported by user interaction for service robots.

[63]  Michel Vidal-Naquet,et al.  Visual features of intermediate complexity and their use in classification , 2002, Nature Neuroscience.

[64]  Derek R. Magee,et al.  Detecting lameness using 'Re-sampling Condensation' and 'multi-stream cyclic hidden Markov models' , 2002, Image Vis. Comput..

[65]  Shimon Ullman,et al.  Class-Specific, Top-Down Segmentation , 2002, ECCV.

[66]  Dan Roth,et al.  Learning a Sparse Representation for Object Detection , 2002, ECCV.

[67]  Cordelia Schmid,et al.  Learning to Parse Pictures of People , 2002, ECCV.

[68]  Andrew Zisserman,et al.  Multi-view Matching for Unordered Image Sets, or "How Do I Organize My Holiday Snaps?" , 2002, ECCV.

[69]  Stefan Carlsson,et al.  Recognizing and Tracking Human Action , 2002, ECCV.

[70]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[71]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[72]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[73]  Stepán Obdrzálek,et al.  Object Recognition using Local Affine Frames on Distinguished Regions , 2002, BMVC.

[74]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[75]  Pedro F. Felzenszwalb Learning models for object recognition , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[76]  David G. Lowe,et al.  Local feature view clustering for 3D object recognition , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[77]  Thomas Serre,et al.  Component-based face detection , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[78]  Marcel Worring,et al.  Face detection by aggregated Bayesian network classifiers , 2001, Pattern Recognit. Lett..

[79]  C. Schmid,et al.  Indexing based on scale invariant interest points , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[80]  D. Comaniciu,et al.  The variable bandwidth mean shift and data-driven scale selection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[81]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[82]  Antonio Torralba,et al.  Statistical context priming for object detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[83]  Sergey Ioffe,et al.  Human tracking with mixtures of trees , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[84]  Tomaso A. Poggio,et al.  Example-Based Object Detection in Images by Components , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[85]  Nathan Intrator,et al.  Probabilistic principles in unsupervised learning of visual structure: human data and a model , 2001, NIPS.

[86]  Refractor Vision , 2000, The Lancet.

[87]  A. Needham Object recognition and object segregation in 4.5-month-old infants. , 2001, Journal of experimental child psychology.

[88]  Serge J. Belongie,et al.  Matching shapes , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[89]  Pietro Perona,et al.  Unsupervised Learning of Models for Recognition , 2000, ECCV.

[90]  Dariu Gavrila,et al.  Pedestrian Detection from a Moving Vehicle , 2000, ECCV.

[91]  Pietro Perona,et al.  Towards automatic discovery of object categories , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[92]  Takeo Kanade,et al.  A statistical method for 3D object detection applied to faces and cars , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[93]  Ronen Basri,et al.  Fast multiscale image segmentation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[94]  Luc Van Gool,et al.  Wide Baseline Stereo Matching based on Local, Affinely Invariant Regions , 2000, BMVC.

[95]  Pietro Perona,et al.  Unsupervised learning of models for object recognition , 2000 .

[96]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[97]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[98]  Seventh International Conference on Computer Vision ICCV'99 , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[99]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[100]  Dariu Gavrila,et al.  Real-time object detection for "smart" vehicles , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[101]  Dariu Gavrila,et al.  Multi-feature hierarchical template matching using distance transforms , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[102]  R. Nelson,et al.  Large-scale tests of a keyed, appearance-based 3-D object recognition system , 1998, Vision Research.

[103]  S. Ullman Three-dimensional object recognition based on the combination of views , 1998, Cognition.

[104]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[105]  Pietro Perona,et al.  A Probabilistic Approach to Object Recognition Using Local Photometry and Global Geometry , 1998, ECCV.

[106]  R. O’Reilly,et al.  Figure-ground organization and object recognition processes: an interactive account. , 1998, Journal of experimental psychology. Human perception and performance.

[107]  Sven J. Dickinson,et al.  Shock Graphs and Shape Matching , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[108]  Tomaso A. Poggio,et al.  Multidimensional morphable models , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[109]  Andrea Salgian,et al.  A cubist approach to object recognition , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[110]  Cordelia Schmid,et al.  Comparing and evaluating interest points , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[111]  Sam T. Roweis,et al.  EM Algorithms for PCA and SPCA , 1997, NIPS.

[112]  Sameer A. Nene,et al.  A simple algorithm for nearest neighbor search in high dimensions , 1997 .

[113]  Roberto Cipolla,et al.  Feature-based human face detection , 1997, Image Vis. Comput..

[114]  Norbert Krüger,et al.  Face recognition by elastic bunch graph matching , 1997, Proceedings of International Conference on Image Processing.

[115]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[116]  David A. Forsyth,et al.  Body plans , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[117]  Tapas Kanungo,et al.  Object recognition using appearance-based parts and relations , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[118]  Bartlett W. Mel SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition , 1997, Neural Computation.

[119]  Stan Sclaroff,et al.  Deformable prototypes for encoding shape categories in image databases , 1995, Pattern Recognit..

[120]  Thomas Hofmann,et al.  Data clustering and beyond: a deterministic annealing framework for exploratory data analysis , 1997 .

[121]  Michael J. Jones,et al.  Model-Based Matching by Linear Combinations of Prototypes , 1996 .

[122]  Takeo Kanade,et al.  Neural network-based face detection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[123]  Cordelia Schmid,et al.  Combining greyvalue invariants with local constraints for object recognition , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[124]  John K. Tsotsos,et al.  Modeling Visual Attention via Selective Tuning , 1995, Artif. Intell..

[125]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[126]  Rajesh P. N. Rao,et al.  Object indexing using an iconic sparse distributed memory , 1995, Proceedings of IEEE International Conference on Computer Vision.

[127]  M. Peterson Object Recognition Processes Can and Do Operate Before Figure–Ground Organization , 1994 .

[128]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[129]  R. Deriche Recursively Implementing the Gaussian and its Derivatives , 1993 .

[130]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[131]  William Grimson,et al.  Object recognition by computer - the role of geometric constraints , 1991 .

[132]  John K. Tsotsos Analyzing vision at the complexity level , 1990, Behavioral and Brain Sciences.

[133]  Haim J. Wolfson,et al.  Model-Based Object Recognition by Geometric Hashing , 1990, ECCV.

[134]  G. Lakoff Women, fire, and dangerous things : what categories reveal about the mind , 1988, Dialogue.

[135]  Alan L. Yuille,et al.  Feature extraction from faces using deformable templates , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[136]  Yehezkel Lamdan,et al.  Object recognition by affine invariant matching , 2011, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[137]  Yehezkel Lamdan,et al.  Geometric Hashing: A General And Efficient Model-based Recognition Scheme , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[138]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[139]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[140]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[141]  Ellen M. Voorhees,et al.  Implementing agglomerative hierarchic clustering algorithms for use in document retrieval , 1986, Inf. Process. Manag..

[142]  H. Edelsbrunner,et al.  Efficient algorithms for agglomerative hierarchical clustering methods , 1984 .

[143]  R. Gray,et al.  Vector quantization , 1984, IEEE ASSP Magazine.

[144]  L. Barsalou,et al.  Ad hoc categories , 1983, Memory & cognition.

[145]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[146]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[147]  J. T. Robinson,et al.  The K-D-B-tree: a search structure for large multidimensional dynamic indexes , 1981, SIGMOD '81.

[148]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[149]  C. de Rham,et al.  La classification hiérarchique ascendante selon la méthode des voisins réciproques , 1980 .

[150]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[151]  Michel Bruynooghe,et al.  Méthodes nouvelles en classification automatique de données taxinomiques nombreuses , 1977 .

[152]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[153]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[154]  G. N. Lance,et al.  A general theory of classificatory sorting strategies: II. Clustering systems , 1967, Comput. J..

[155]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[156]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[157]  R. Brown How shall a thing be called. , 1958, Psychological review.

[158]  J. Gibson Survival in a World of Probable Objects. , 1957 .