Background modeling in the maritime domain

Maritime environment represents a challenging scenario for automatic video surveillance due to the complexity of the observed scene: waves on the water surface, boat wakes, and weather issues contribute to generate a highly dynamic background. Moreover, an appropriate background model has to deal with gradual and sudden illumination changes, camera jitter, shadows, and reflections that can provoke false detections. Using a predefined distribution (e.g., Gaussian) for generating the background model can result ineffective, due to the need of modeling non-regular patterns. In this paper, a method for creating a “discretization” of an unknown distribution that can model highly dynamic background such as water is described. A quantitative evaluation carried out on two publicly available datasets of videos and images, containing data recorded in different maritime scenarios, with varying light and weather conditions, demonstrates the effectiveness of the approach.

[1]  Andres Huertas,et al.  Daytime Water Detection by Fusing Multiple Cues for Autonomous Off-Road Navigation , 2006 .

[2]  Zoran Zivkovic,et al.  Improved adaptive Gaussian mixture model for background subtraction , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[3]  Shengping Zhang,et al.  Dynamic background modeling and subtraction using spatio-temporal local binary patterns , 2008, 2008 15th IEEE International Conference on Image Processing.

[4]  Stan Sclaroff,et al.  Segmenting foreground objects from a dynamic textured background via a robust Kalman filter , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[5]  Vitaly Ablavsky,et al.  Background models for tracking objects in water , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[6]  HeikkilaMarko,et al.  A Texture-Based Method for Modeling the Background and Detecting Moving Objects , 2006 .

[7]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Rogério Schmidt Feris,et al.  Robust Detection of Abandoned and Removed Objects in Complex Surveillance Videos , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[9]  Stefano Soatto,et al.  Dynamic Textures , 2003, International Journal of Computer Vision.

[10]  Marko Heikkilä,et al.  A texture-based method for modeling the background and detecting moving objects , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Thierry Chateau,et al.  A Benchmark Dataset for Outdoor Foreground/Background Extraction , 2012, ACCV Workshops.

[12]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[13]  Luca Iocchi,et al.  Argos - a Video Surveillance System for boat Traffic Monitoring in Venice , 2009, Int. J. Pattern Recognit. Artif. Intell..

[14]  Nikos Paragios,et al.  Motion-based background subtraction using adaptive kernel density estimation , 2004, CVPR 2004.

[15]  Qiang He,et al.  Detection of reflecting surfaces by a statistical model , 2009, Electronic Imaging.

[16]  Wen Gao,et al.  A covariance-based method for dynamic background subtraction , 2008, 2008 19th International Conference on Pattern Recognition.

[17]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[18]  Ming Zhao,et al.  Robust background subtraction in HSV color space , 2002, SPIE ITCom.

[19]  Mircea Nicolescu,et al.  Robust Recursive Learning for Foreground Region Detection in Videos with Quasi-Stationary Backgrounds , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[20]  Shengping Zhang,et al.  Dynamic Background Subtraction Based on Local Dependency Histogram , 2008, Int. J. Pattern Recognit. Artif. Intell..

[21]  Xiaobo Ding,et al.  New Goodness of Fit Tests Based on Stochastic EDF , 2010 .

[22]  Yaser Sheikh,et al.  Bayesian object detection in dynamic scenes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[23]  W. Eric L. Grimson,et al.  Background Subtraction for Temporally Irregular Dynamic Textures , 2008, 2008 IEEE Workshop on Applications of Computer Vision.

[24]  Rita Cucchiara,et al.  Detecting Moving Objects, Ghosts, and Shadows in Video Streams , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Fatih Murat Porikli,et al.  Changedetection.net: A new change detection benchmark dataset , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[26]  Shireen Elhabian,et al.  Moving Object Detection in Spatial Domain using Background Removal Techniques - State-of-Art , 2008 .

[27]  Joachim M. Buhmann,et al.  Topology Free Hidden Markov Models: Application to Background Modeling , 2001, ICCV.

[28]  Vittorio Murino,et al.  Background Subtraction for Automated Multisensor Surveillance: A Comprehensive Review , 2010, EURASIP J. Adv. Signal Process..

[29]  Chandrika Kamath,et al.  Robust techniques for background subtraction in urban traffic video , 2004, IS&T/SPIE Electronic Imaging.

[30]  Wen Gao,et al.  Hierarchical background subtraction using local pixel clustering , 2008, 2008 19th International Conference on Pattern Recognition.

[31]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[32]  Olivier Bernier,et al.  Real Time Illumination Invariant Background Subtraction Using Local Kernel Histograms , 2006, BMVC.

[33]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[34]  Thierry Chateau,et al.  A Benchmark Dataset for Foreground/Background Extraction , 2012, ACCV 2012.

[35]  Shengping Zhang,et al.  Spatial-temporal nonparametric background subtraction in dynamic scenes , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[36]  P. KaewTrakulPong,et al.  An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection , 2002 .

[37]  Kenneth Y. Goldberg,et al.  Visual tracking of human visitors under variable-lighting conditions for a responsive audio art installation , 2012, 2012 American Control Conference (ACC).

[38]  Luca Iocchi,et al.  Independent multimodal background subtraction , 2012, CompIMAGE.

[39]  David Suter,et al.  Background Subtraction Based on a Robust Consensus Method , 2006, 18th International Conference on Pattern Recognition (ICPR'06).