Fiber-drawn double split ring resonators in the terahertz range

We present a novel method for producing metamaterials based on double split ring resonators with a magnetic resonance at terahertz (THz) frequencies. The resonators were made by fiber drawing, a scalable method capable of producing large volumes of metamaterials, demonstrating that this technique can be extended to complex meta-atoms. The observed resonances occur at larger wavelengths relative to the resonator size, compared to single split ring resonators, and are in good agreement with simulations.

[1]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[2]  Jan G. Korvink,et al.  Terahertz metamaterials fabricated by inkjet printing , 2009 .

[3]  Richard Lwin,et al.  Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range. , 2011, Optics express.

[4]  C. Puttlitz,et al.  Metamaterial-based wireless strain sensors , 2009 .

[5]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[6]  R. Lewis,et al.  Fiber metamaterials with negative magnetic permeability in the terahertz , 2011 .

[7]  Patricia Scully,et al.  Chemical tapering of polymer optical fibre , 1999 .

[8]  Markus A. Schmidt,et al.  Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires , 2007, 0711.4553.

[9]  Ci-Ling Pan,et al.  Fabrication of Terahertz Planar Metamaterials Using a Super-Fine Ink-Jet Printer , 2009 .

[10]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[11]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[12]  O. Shapira,et al.  Towards multimaterial multifunctional fibres that see, hear, sense and communicate. , 2007, Nature materials.

[13]  G. F. Taylor A Method of Drawing Metallic Filaments and a Discussion of their Properties and Uses , 1924 .

[14]  S. Tretyakov,et al.  Strong spatial dispersion in wire media in the very large wavelength limit , 2002, cond-mat/0211204.

[15]  R. Y. Koyama,et al.  Optical Properties of Indium , 1973 .

[16]  Ayman F. Abouraddy,et al.  Metal–insulator–semiconductor optoelectronic fibres , 2004, Nature.

[17]  Boris Kuhlmey,et al.  Metallic mode confinement in microstructured fibres. , 2008, Optics express.

[18]  Oliver G Schmidt,et al.  Combined surface plasmon and classical waveguiding through metamaterial fiber design. , 2010, Nano letters.

[19]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.

[20]  R. Lewis,et al.  Spatial dispersion in three-dimensional drawn magnetic metamaterials. , 2012, Optics express.

[21]  Simon Fleming,et al.  Drawn metamaterials with plasmonic response at terahertz frequencies , 2010 .

[22]  Yun-Sik Jin,et al.  Terahertz Dielectric Properties of Polymers , 2006 .

[23]  A. Argyros,et al.  Microstructured Polymer Optical Fibers , 2009, Journal of Lightwave Technology.

[24]  Alexander Argyros,et al.  Characterization of a microstructured Zeonex terahertz fiber , 2011 .

[25]  Burak Temelkuran,et al.  External Reflection from Omnidirectional Dielectric Mirror Fibers , 2002, Science.

[26]  Francisco Medina,et al.  Artificial magnetic metamaterial design by using spiral resonators , 2004 .

[27]  Hui-Tian Wang,et al.  Tunable slow light in semiconductor metamaterial in a broad terahertz regime , 2010 .

[28]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[29]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[30]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.