Geometry-aware partitioning of complex domains for parallel quad meshing

We develop a partitioning algorithm to decompose complex 2D data into small and simple subregions suitable for effective distributed and parallel quadrilateral mesh generation. To support high-quality quad mesh generation, the partitioning reduces to solving an integer quadratic optimization problem with linear constraints. Directly solving this problem is expensive for large-scale data. Hence, we also suggest a more efficient two-step algorithm to obtain an approximate solution. First, we partition the region into a set of cells using L Centroidal Voronoi Tessellation (CVT), then we solve a graph partitioning on the dual graph of this CVT to minimize the total partitioning boundary length, while enforcing the load balancing and each subregions connectivity. With this decomposition, subregions are distributed to multiple processors for parallel mesh generation. Through comparisons on the quality of the final meshes and the performance of simulations run on these meshes, we show that our decomposition algorithm outperforms existing partitioning approaches by offering more simulation-friendly regular meshes. A new data partitioning algorithm for large-scale quad mesh generation.A parallel computing framework for distributed geometric processing and meshing.A quad mesh generator for efficient scientific simulations of large geometric data.

[1]  Kolja Brix,et al.  Parallelisation of Multiscale-Based Grid Adaptation using Space-Filling Curves , 2009 .

[2]  F. B. Introduction to Bessel Functions , 1939, Nature.

[3]  Ioannis Pratikakis,et al.  3D Mesh Segmentation Methodologies for CAD applications , 2007 .

[4]  Nikos Chrisochoides,et al.  Algorithm 870: A static geometric Medial Axis domain decomposition in 2D Euclidean space , 2008, TOMS.

[5]  Christophe Geuzaine,et al.  A frontal Delaunay quad mesh generator using the L ∞ norm , 2013, IMR.

[6]  Marcel Campen,et al.  Quad Layout Embedding via Aligned Parameterization , 2014, Comput. Graph. Forum.

[7]  Aleksandar Jemcov,et al.  OpenFOAM: A C++ Library for Complex Physics Simulations , 2007 .

[8]  W. R. Buell,et al.  Mesh Generation—A Survey , 1973 .

[9]  Marco Attene,et al.  Hierarchical Convex Approximation of 3D Shapes for Fast Region Selection , 2008, Comput. Graph. Forum.

[10]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[11]  Suzanne M. Shontz,et al.  MDEC: MeTiS-based Domain Decomposition for Parallel 2D Mesh Generation , 2011, ICCS.

[12]  Peter MacNeice,et al.  Paramesh: A Parallel Adaptive Mesh Refinement Community Toolkit , 2013 .

[13]  B. E. Launder,et al.  Closure Strategies for Turbulent and Transitional Flows , 2002 .

[14]  Kang Zhang,et al.  A topology-preserving optimization algorithm for polycube mapping , 2011, Comput. Graph..

[15]  Ted D. Blacker,et al.  Paving: A new approach to automated quadrilateral mesh generation , 1991 .

[16]  Henning Meyerhenke,et al.  Dynamic Load Balancing for Parallel Numerical Simulations Based on Repartitioning with Disturbed Diffusion , 2009, 2009 15th International Conference on Parallel and Distributed Systems.

[17]  S. S. Iyengar,et al.  On Computing Mapping of 3D Objects , 2014, ACM Comput. Surv..

[18]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[19]  Ariel Shamir,et al.  A survey on Mesh Segmentation Techniques , 2008, Comput. Graph. Forum.

[20]  J. C. Jaeger,et al.  Some Two‐Dimensional Problems in Conduction of Heat with Circular Symmetry , 1940 .

[21]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[22]  D. Carati,et al.  Large-eddy simulation , 2000 .

[23]  Thomas Sauerwald,et al.  A new diffusion-based multilevel algorithm for computing graph partitions of very high quality , 2008, IPDPS.

[24]  Walid G. Aref,et al.  Irregularity in high-dimensional space-filling curves , 2010, Distributed and Parallel Databases.

[25]  W. Rodi,et al.  Closure Strategies for Turbulent and Transitional Flows: Introduction to Large Eddy Simulation of Turbulent Flows , 2002 .

[26]  Luiz Velho,et al.  Adaptive multi-chart and multiresolution mesh representation , 2014, Comput. Graph..

[27]  Kang Zhang,et al.  Optimizing polycube domain construction for hexahedral remeshing , 2014, Comput. Aided Des..

[28]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[29]  Hong Qin,et al.  Geometry-aware domain decomposition for T-spline-based manifold modeling , 2009, Comput. Graph..

[30]  Rainald Löhner,et al.  A 2nd Generation Parallel Advancing Front Grid Generator , 2013, IMR.

[31]  Nikos Chrisochoides,et al.  Delaunay Decoupling Method for Parallel Guaranteed Quality Planar Mesh Refinement , 2005, SIAM J. Sci. Comput..

[32]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[33]  Joaquim B. Cavalcante Neto,et al.  A distributed-memory parallel technique for two-dimensional mesh generation for arbitrary domains , 2013, Adv. Eng. Softw..

[34]  B. Lévy,et al.  Lp Centroidal Voronoi Tessellation and its applications , 2010, ACM Trans. Graph..

[35]  Daniel Kressner,et al.  Block variants of Hammarling's method for solving Lyapunov equations , 2008, TOMS.

[36]  S. Owen,et al.  H-Morph: an indirect approach to advancing front hex meshing , 1999 .

[37]  Kazuhiro Nakahashi,et al.  Parallel unstructured mesh generation by an advancing front method , 2007, Math. Comput. Simul..

[38]  Hua Ji,et al.  A new adaptive mesh refinement data structure with an application to detonation , 2010, J. Comput. Phys..

[39]  Gérard Cornuéjols,et al.  An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..

[40]  Chenglei Yang,et al.  On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.

[41]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[42]  Mohamed S. Ebeida,et al.  Guaranteed-Quality All-Quadrilateral Mesh Generation with Feature Preservation , 2009, IMR.

[43]  David Martineau,et al.  Automated Two-Dimensional Multi-block Meshing Using the Medial Object , 2011, IMR.

[44]  Bruno Lévy,et al.  Quad‐Mesh Generation and Processing: A Survey , 2013, Comput. Graph. Forum.

[45]  William W. Hager,et al.  Graph Partitioning and Continuous Quadratic Programming , 1999, SIAM J. Discret. Math..

[46]  B. Geurts REGULARIZATION MODELING FOR LARGE-EDDY SIMULATION OF DIFFUSION FLAMES , 2006 .

[47]  Masha Sosonkina,et al.  Graph Partitioning Using Matrix Values for Preconditioning Symmetric Positive Definite Systems , 2011, SIAM J. Sci. Comput..

[48]  Arturo Cifuentes,et al.  A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis , 1992 .

[49]  Nikos Chrisochoides,et al.  Guaranteed: quality parallel delaunay refinement for restricted polyhedral domains , 2002, SCG '02.

[50]  Thomas A. Funkhouser,et al.  A benchmark for 3D mesh segmentation , 2009, ACM Trans. Graph..

[51]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[52]  B. Lévy,et al.  L p Centroidal Voronoi Tessellation and its applications , 2010, SIGGRAPH 2010.