A proof of a Melrose’s trace formula

The goal of this note is to give a proof of the wave trace formula proved by Richard Melrose in the impressive paper [Me-84]. This trace formula is an extension of the Chazarain-Duistermaat-Guillemin trace formula (denoted “CDG trace formula” in this paper) to the case of a sub-Riemannian (“sR”) Laplacian on a 3D contact closed manifold. The proof uses a normal form constructed in the papers [CHT-18, CHT-21], following the pioneering work [Me-84], in order to reduce to the case of the invariant Laplacian on the 3DHeisenberg group. We need also the propagation of singularities results of Victor Ivrii, Bernard Lascar and Richard Melrose [Iv-76, La-82, Me-86]. Aknowledgments: many thanks to Cyril for very useful comments!

[1]  Y. D. Verdière,et al.  Spectral asymptotics for sub-Riemannian Laplacians , 2022, 2212.02920.

[2]  Y. D. Verdière Periodic geodesics for contact sub-Riemannian 3D manifolds , 2022, 2202.13743.

[3]  Cyril Letrouit Propagation of Singularities for Subelliptic Wave Equations , 2021, Communications in Mathematical Physics.

[4]  CaGE,et al.  Spiraling of sub-Riemannian geodesics around the Reeb flow in the 3D contact case , 2021, 2102.12741.

[5]  Cyril Letrouit Subelliptic wave equations are never observable , 2020, 2002.01259.

[6]  Steven Zelditch Séminaire de Théorie spectrale et géométrie Quantum ergodicity of C ∗ -dynamical systems , 2017 .

[7]  Emmanuel Tr'elat,et al.  Spectral asymptotics for sub-Riemannian Laplacians. I: quantum ergodicity and quantum limits in the 3D contact case , 2015, 1504.07112.

[8]  Y. D. Verdière Spectrum of the Laplace operator and periodic geodesics: thirty years after , 2007 .

[9]  Y. C. Verdière Une introduction aux opérateurs de Toeplitz , 1995 .

[10]  Y. Egorov,et al.  Fourier Integral Operators , 1994 .

[11]  H. Pesce Une formule de Poisson pour les variétés de Heisenberg , 1992 .

[12]  R. Melrose Propagation for the Wave Group of a Positive Subelliptic Second-Order Differential Operator , 1986 .

[13]  R. Melrose The wave equation for a hypoelliptic operator with symplectic characteristics of codimension two , 1984 .

[14]  B. Lascar Propagation des Singularites Pour des Equations Hyperboliques a Caracteristique de Multiplicite au Plus Double et Singularites Masloviennes , 1982 .

[15]  V. Guillemin,et al.  The Spectral Theory of Toeplitz Operators. , 1981 .

[16]  L. B. Monvel Opérateurs à coefficients polynomiaux, espace de Bargmann, et opérateurs de Toeplitz , 1981 .

[17]  B. Simon Functional integration and quantum physics , 1979 .

[18]  V. Guillemin,et al.  The spectrum of positive elliptic operators and periodic bicharacteristics , 1975 .

[19]  J. Chazarain Formule de Poisson pour les variétés riemanniennes , 1974 .

[20]  Y. C. Verdière,et al.  Spectre du laplacien et longueurs des géodésiques périodiques. II , 1973 .

[21]  L. Hörmander,et al.  Fourier integral operators. II , 1972 .

[22]  R. Balian,et al.  Distribution of eigenfrequencies for the wave equation in a finite domain: III. Eigenfrequency density oscillations , 1972 .

[23]  M. Gutzwiller,et al.  Periodic Orbits and Classical Quantization Conditions , 1971 .

[24]  Robert T. Seeley,et al.  Complex powers of an elliptic operator , 1967 .

[25]  H. Huber Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen , 1959 .

[26]  A. Selberg Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series , 1956 .