Overview of novel integrated optical ring resonator bio/chemical sensors

In parallel to a stand-alone microsphere resonator and a planar ring resonator on a wafer, the liquid core optical ring resonator (LCORR) is regarded as the third type of ring resonator that integrates microfluidics with state-of-the-art photonics. The LCORR employs a micro-sized glass capillary with a wall thickness of a few microns. The circular cross section of the capillary forms a ring resonator that supports the whispering gallery modes (WGMs), which has the evanescent field in the core, allowing for repetitive interaction with the analytes carried inside the capillary. Despite the small physical size of the LCORR and sub-nanoliter sensing volume, the effective interaction length can exceed 10 cm due to high Q-factor (106), significantly improving the LCORR detection limit. The LCORR is a versatile system that exhibits excellent fluid handling capability inherent to capillaries and permits non-invasive and quantitative measurement at any location along the capillary. Furthermore, the LCORR uses the refractive index change as a transduction signal, which enables label-free detection. Therefore, the LCORR is a promising technology platform for future sensitive, miniaturized, lab-on-a-chip type sensors. In this paper, we will introduce the concept of the LCORR and present the theoretical analysis and the experimental results related to the LCORR sensor development.

[1]  S. Arnold,et al.  Excitation of resonances of microspheres on an optical fiber. , 1995, Optics letters.

[2]  Ian M. White,et al.  Demonstration of composite microsphere cavity and surface enhanced raman spectroscopy for improved sensitivity , 2005, SPIE Optics East.

[3]  François Chatelain,et al.  Photochemical patterning of biological molecules inside a glass capillary. , 2005, Analytical chemistry.

[4]  Hongying Zhu,et al.  Thermal characterization of liquid core optical ring resonator sensors. , 2007, Applied optics.

[5]  Jan Greve,et al.  Integrated optical microcavities for spectroscopy , 2001, SPIE OPTO.

[6]  R. Narayanaswarny,et al.  Optical sensors , 2005, 2005 Asian Conference on Sensors and the International Conference on New Techniques in Pharmaceutical and Biomedical Research.

[7]  Stephen Arnold,et al.  Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer , 2006 .

[8]  S. Arnold,et al.  Shift of whispering-gallery modes in microspheres by protein adsorption. , 2003, Optics letters.

[9]  Jan Greve,et al.  Performance of integrated optical microcavities for refractive index and fluorescence sensing , 2003 .

[10]  D. Gill,et al.  Optical sensing of biomolecules using microring resonators , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  Ian M. White,et al.  Demonstration of a liquid core optical ring resonator sensor coupled with an ARROW waveguide array , 2007, SPIE OPTO.

[12]  T. Arakawa,et al.  Refractive index of proteins in organic solvents. , 1999, Analytical biochemistry.

[13]  S. Shoji Micro Total Analysis Systems , 1999 .

[14]  Jon P. Longtin,et al.  PRECISION LASER-BASED CONCENTRATION AND REFRACTIVE INDEX MEASUREMENT OF LIQUIDS , 1998 .

[15]  James P. Landers,et al.  Handbook of Capillary Electrophoresis , 1993 .

[16]  Brian M. Cullum,et al.  Smart Medical and Biomedical Sensor Technology IV , 2006 .

[17]  Andrea M. Armani,et al.  Heavy water detection using ultra-high-Q microcavities. , 2006 .

[18]  M. Sumetsky,et al.  Sensing an optical fiber surface by a microfiber with angstrom accuracy , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[19]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[20]  Richart E. Slusher,et al.  Optical Processes in Microcavities , 1994 .

[21]  D. Keng,et al.  Nanolayer characterization through wavelength multiplexing of a microsphere resonator , 2005 .

[22]  Hongying Zhu,et al.  Integrated refractive index optical ring resonator detector for capillary electrophoresis. , 2007, Analytical chemistry.

[23]  Darwin R. Reyes,et al.  Micro total analysis systems. 2. Analytical standard operations and applications. , 2002, Analytical chemistry.

[24]  Pieter Telleman,et al.  Microsystem Engineering of Lab-on-a-chip devices. , 2003 .

[25]  Hesam Oveys,et al.  Tuning whispering gallery modes in optical microspheres with chemical etching. , 2005, Optics express.

[26]  Seung-Yong Jung,et al.  Patterning enzymes inside microfluidic channels via photoattachment chemistry. , 2004, Analytical chemistry.

[27]  Ian M. White,et al.  Refractometric sensors based on microsphere resonators , 2005 .

[28]  Hongying Zhu,et al.  Liquid core optical ring resonator label-free biosensor array for lab-on-a-chip development , 2006, SPIE Optics East.

[29]  A. Ksendzov,et al.  Integrated optics ring-resonator sensors for protein detection. , 2005, Optics letters.

[30]  V. Kolchenko,et al.  Molecular weight dependence of a whispering gallery mode biosensor , 2005 .

[31]  T. Koch,et al.  Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures , 1986 .

[32]  Jacob Scheuer,et al.  Optical annular resonators based on radial Bragg and photonic crystal reflectors. , 2003, Optics express.

[33]  Kiminori Itoh,et al.  Planar optical waveguides for sensing applications , 2000 .

[34]  L. Poladian,et al.  Fabrication of microstructured optical fibers-part II: numerical modeling of steady-state draw process , 2005, Journal of Lightwave Technology.

[35]  Mohammad Soltanieh,et al.  Transport of small polar molecules across nonporous polymeric membranes: I. Experimental procedures and data analysis , 2003 .

[36]  Hongying Zhu,et al.  Bio/chemical sensors based on liquid core optical ring resonator , 2006, SPIE Defense + Commercial Sensing.

[37]  Joel P Golden,et al.  Integrating waveguide biosensor. , 2002, Analytical chemistry.

[38]  Chung-Yen Chao,et al.  Biochemical sensors based on polymer microrings with sharp asymmetrical resonance , 2003 .

[39]  A. Yariv,et al.  InGaAsP annular Bragg lasers: theory, applications, and modal properties , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[40]  Cha-Mei Tang,et al.  Integrating waveguide biosensor. , 2009, Methods in molecular biology.

[41]  Michael Hochberg,et al.  High-Q ring resonators in thin silicon-on-insulator , 2004 .

[42]  Dieter Braun,et al.  Protein detection by optical shift of a resonant microcavity , 2002 .

[43]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[44]  D. Braun,et al.  Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities. , 2003, Biophysical journal.

[45]  J E Heebner,et al.  Sensitive disk resonator photonic biosensor. , 2001, Applied optics.

[46]  J Rezac,et al.  Locking a microsphere whispering-gallery mode to a laser. , 2001, Optics express.

[47]  Xudong Fan,et al.  Subfemtomole detection of small molecules with microsphere sensors. , 2005, Optics letters.

[48]  S. Ho,et al.  Design and modeling of waveguide-coupled single-mode microring resonators , 1998 .

[49]  L.J. Guo,et al.  Polymer microring resonators for biochemical sensing applications , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[50]  L. Poladian,et al.  Role of material properties and drawing conditions in the fabrication of microstructured optical fibers , 2006, Journal of Lightwave Technology.

[51]  Hongying Zhu,et al.  Aptamer Based Microsphere Biosensor for Thrombin Detection , 2006, Sensors (Basel, Switzerland).

[52]  Darwin R. Reyes,et al.  Micro total analysis systems. 1. Introduction, theory, and technology. , 2002, Analytical chemistry.

[53]  Frank Vollmer,et al.  Perturbation approach to resonance shift of whispering gallery modes in a dielectric microsphere as a probe of a surrounding medium , 2003 .

[54]  Zhaoyu Zhang,et al.  Mechanically tunable optofluidic distributed feedback dye laser , 2006, 2006 Digest of the LEOS Summer Topical Meetings.

[55]  Qianfan Xu,et al.  Guiding and confining light in void nanostructure. , 2004, Optics letters.

[56]  L C Kimerling,et al.  Pedestal antiresonant reflecting waveguides for robust coupling to microsphere resonators and for microphotonic circuits. , 2000, Optics letters.

[57]  Vladimir S. Ilchenko,et al.  High-Q whispering-gallery mode sensor in liquids , 2002, SPIE LASE.

[58]  Tanya M. Monro,et al.  Modeling the fabrication of hollow fibers: capillary drawing , 2001 .

[59]  L. Poladian,et al.  Fabrication of microstructured optical fibers-part I: problem formulation and numerical modeling of transient draw process , 2005, Journal of Lightwave Technology.

[60]  Jan Greve,et al.  Two-photon fluorescence excitation using an integrated optical microcavity: a promising tool for biosensing of natural chromophores. , 2005, Talanta.

[61]  Shiping Fang,et al.  Real-time surface plasmon resonance imaging measurements for the multiplexed determination of protein adsorption/desorption kinetics and surface enzymatic reactions on peptide microarrays. , 2004, Analytical chemistry.

[62]  Burak Temelkuran,et al.  External Reflection from Omnidirectional Dielectric Mirror Fibers , 2002, Science.

[63]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[64]  M. Lonergan,et al.  Coupling semiconductor nanocrystals to a fused-silica microsphere: a quantum-dot microcavity with extremely high Q factors. , 2000, Optics letters.

[65]  L.J. Guo,et al.  Optical sensors based on active microcavities , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[66]  Alexander Ksendzov,et al.  Integrated optics ring-resonator chemical sensor with polymer transduction layer , 2004 .

[67]  Stephen Arnold,et al.  Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications , 2006 .

[68]  Xudong Fan,et al.  Liquid-core optical ring-resonator sensors. , 2006, Optics letters.

[69]  Zhixiong Guo,et al.  Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors , 2005 .

[70]  J.-P. Laine,et al.  Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler , 2000, IEEE Photonics Technology Letters.

[71]  Laura M. Lechuga,et al.  Feasibility of evanescent wave interferometer immunosensors for pesticide detection: chemical aspects , 1995 .

[72]  Ian M. White,et al.  Increasing the Enhancement of SERS with Dielectric Microsphere Resonators , 2006 .

[73]  Hongying Zhu,et al.  Refractometric Sensors for Lab-on-a-Chip Based on Optical Ring Resonators , 2007, IEEE Sensors Journal.

[74]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[75]  A. Manz,et al.  Micro total analysis systems. Latest advancements and trends. , 2006, Analytical chemistry.

[76]  M. Gorodetsky,et al.  Ultimate Q of optical microsphere resonators. , 1996, Optics letters.

[77]  S. Blair,et al.  Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities. , 2001, Applied optics.

[78]  Ian M. White,et al.  Label-Free Protease Sensors Based on Optical Microsphere Resonators , 2005 .

[79]  B. Eggleton,et al.  Antiresonant reflecting photonic crystal optical waveguides. , 2002, Optics letters.

[80]  Kenichi Iga,et al.  Loss reduction of an ARROW waveguide in shorter wavelength and its stack configuration , 1988 .

[81]  Michael Hochberg,et al.  High-Q Optical Resonators in Silicon-on-Insulator-Based Slot Waveguides , 2005 .

[82]  Demetri Psaltis,et al.  Mechanically tunable optofluidic distributed feedback dye laser. , 2006 .

[83]  Andrea M Armani,et al.  Heavy water detection using ultra-high-Q microcavities. , 2006, Optics letters.

[84]  R E Harrington The flow birefringence of persistence length deoxyribonucleic acid. Hydrodynamic properties, optical anisotropy, and hydration shell anistropy. , 1970, Journal of the American Chemical Society.

[85]  A. Berg,et al.  Micro Total Analysis Systems , 1995 .

[86]  Ian M. White,et al.  Aqueous mercuric ion detection with microsphere optical ring resonator sensors , 2006 .

[87]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[88]  Qingli Kou,et al.  Collinear dual-color laser emission from a microfluidic dye laser , 2006 .

[89]  L C Kimerling,et al.  Planar integrated wavelength-drop device based on pedestal antiresonant reflecting waveguides and high-Q silica microspheres. , 2000, Optics letters.

[90]  Mitsunobu Miyagi,et al.  Hollow infrared fibers fabricated by glass-drawing technique. , 2002, Optics express.

[91]  Xudong Fan,et al.  Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides , 2006 .