Estimating Information from Image Colors: An Application to Digital Cameras and Natural Scenes

The colors present in an image of a scene provide information about its constituent elements. But the amount of information depends on the imaging conditions and on how information is calculated. This work had two aims. The first was to derive explicitly estimators of the information available and the information retrieved from the color values at each point in images of a scene under different illuminations. The second was to apply these estimators to simulations of images obtained with five sets of sensors used in digital cameras and with the cone photoreceptors of the human eye. Estimates were obtained for 50 hyperspectral images of natural scenes under daylight illuminants with correlated color temperatures 4,000, 6,500, and 25,000 K. Depending on the sensor set, the mean estimated information available across images with the largest illumination difference varied from 15.5 to 18.0 bits and the mean estimated information retrieved after optimal linear processing varied from 13.2 to 15.5 bits (each about 85 percent of the corresponding information available). With the best sensor set, 390 percent more points could be identified per scene than with the worst. Capturing scene information from image colors depends crucially on the choice of camera sensors.

[1]  Igor Vajda,et al.  Estimation of the Information by an Adaptive Partitioning of the Observation Space , 1999, IEEE Trans. Inf. Theory.

[2]  Kinjiro Amano,et al.  Information Limits on Identification of Natural Surfaces by Apparent Colour , 2005, Perception.

[3]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[4]  D. Foster,et al.  Frequency of metamerism in natural scenes. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[6]  Brian V. Funt,et al.  Color Constant Color Indexing , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  A. Stockman,et al.  The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype , 2000, Vision Research.

[8]  Iván Marín-Franch,et al.  Number of perceptually distinct surface colors in natural scenes. , 2010, Journal of vision.

[9]  M. S. Drew,et al.  Color constancy - Generalized diagonal transforms suffice , 1994 .

[10]  Wei Li,et al.  Binocular measurements of chromatic adaptation , 1992, Vision Research.

[11]  Kinjiro Amano,et al.  Approaching ideal observer efficiency in using color to retrieve information from natural scenes. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[13]  K. Krippendorff Mathematical Theory of Communication , 2009 .

[14]  A. Kraskov,et al.  Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[16]  J. Victor Binless strategies for estimation of information from neural data. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  D. B. Judd,et al.  Spectral Distribution of Typical Daylight as a Function of Correlated Color Temperature , 1964 .

[18]  E. Land Recent advances in retinex theory , 1986, Vision Research.

[19]  Graham D. Finlayson,et al.  Color by Correlation: A Simple, Unifying Framework for Color Constancy , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  R. Harwerth,et al.  Red-Green Cone Interactions in the Increment-Threshold Spectral Sensitivity of Primates , 1971, Science.

[21]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[22]  Kinjiro Amano,et al.  Information limits on neural identification of colored surfaces in natural scenes , 2004, Visual Neuroscience.

[23]  Imre Csiszár Generalized cutoff rates and Renyi's information measures , 1995, IEEE Trans. Inf. Theory.

[24]  Aapo Hyvärinen,et al.  Survey on Independent Component Analysis , 1999 .

[25]  Carsten O. Daub,et al.  The mutual information: Detecting and evaluating dependencies between variables , 2002, ECCB.

[26]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[27]  Flávio P. Ferreira,et al.  Statistics of spatial cone-excitation ratios in natural scenes. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  D. Foster,et al.  Frequency of metamerism in natural scenes , 2006 .

[29]  David H. Foster,et al.  Chromatic Function of the Cones , 2010 .

[30]  G. Buchsbaum,et al.  Trichromacy, opponent colours coding and optimum colour information transmission in the retina , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[31]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[32]  D. Foster Does colour constancy exist? , 2003, Trends in Cognitive Sciences.

[33]  D. Foster,et al.  Relational colour constancy from invariant cone-excitation ratios , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[34]  David H. Foster,et al.  Is there a better non-parametric alternative to von Kries scaling? , 2008, CGIV/MCS.

[35]  Hao Jiang,et al.  Non-von-Kries 3-parameter color prediction , 2003, IS&T/SPIE Electronic Imaging.

[36]  Shlomo Shamai,et al.  On information rates for mismatched decoders , 1994, IEEE Trans. Inf. Theory.

[37]  G. Buchsbaum A spatial processor model for object colour perception , 1980 .

[38]  I. Good,et al.  Information, weight of evidence, the singularity between probability measures and signal detection , 1974 .

[39]  M. N. Goria,et al.  A new class of random vector entropy estimators and its applications in testing statistical hypotheses , 2005 .

[40]  F. Billmeyer Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed., by Gunter Wyszecki and W. S. Stiles, John Wiley and Sons, New York, 1982, 950 pp. Price: $75.00 , 1983 .

[41]  P. Grassberger Entropy Estimates from Insufficient Samplings , 2003, physics/0307138.

[42]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[43]  Steven W. Trovinger,et al.  Emissive Chart for Imager Calibration , 2004, Color Imaging Conference.

[44]  Paul M. Hubel,et al.  Eyeing the Camera: into the Next Century , 2002, Color Imaging Conference.

[45]  Imre Csiszár,et al.  Channel capacity for a given decoding metric , 1995, IEEE Trans. Inf. Theory.

[46]  G D Finlayson,et al.  Spectral sharpening: sensor transformations for improved color constancy. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[47]  David H Foster,et al.  Perceptual Limits on Low-Dimensional Models of Munsell Reflectance Spectra , 2005, Perception.

[48]  R. L. Valois,et al.  Some transformations of color information from lateral geniculate nucleus to striate cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[49]  E. Oja,et al.  Independent Component Analysis , 2013 .

[50]  L. Pollini,et al.  AM A A , 2000 .

[51]  M D'Zmura,et al.  Color constancy. III. General linear recovery of spectral descriptions for lights and surfaces. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[52]  Alexander Kraskov,et al.  Least-dependent-component analysis based on mutual information. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[54]  Amos Lapidoth,et al.  Nearest neighbor decoding for additive non-Gaussian noise channels , 1996, IEEE Trans. Inf. Theory.

[55]  J. Cohen,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulas , 1968 .

[56]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[57]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[58]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[59]  Robert P. W. Duin,et al.  On the Choice of Smoothing Parameters for Parzen Estimators of Probability Density Functions , 1976, IEEE Transactions on Computers.

[60]  J. A. Worthey Limitations of color constancy , 1985 .

[61]  Kinjiro Amano,et al.  Psychophysical estimates of the number of spectral-reflectance basis functions needed to reproduce natural scenes. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.