暂无分享,去创建一个
Hong Yan | Yimin Wei | Maolin Che | Hong Yan | Maolin Che | Yimin Wei
[1] Gene H. Golub,et al. Numerical methods for solving linear least squares problems , 1965, Milestones in Matrix Computation.
[2] Eugene E. Tyrtyshnikov,et al. Cross approximation in tensor electron density computations , 2010, Numer. Linear Algebra Appl..
[3] Petros Drineas,et al. Tensor-CUR Decompositions for Tensor-Based Data , 2008, SIAM J. Matrix Anal. Appl..
[4] Raf Vandebril,et al. A New Truncation Strategy for the Higher-Order Singular Value Decomposition , 2012, SIAM J. Sci. Comput..
[5] Gregory Beylkin,et al. Randomized interpolative decomposition of separated representations , 2013, J. Comput. Phys..
[6] Yimin Wei,et al. Randomized algorithms for the approximations of Tucker and the tensor train decompositions , 2018, Advances in Computational Mathematics.
[7] P WoodruffDavid. Sketching as a Tool for Numerical Linear Algebra , 2014 .
[8] Christos Boutsidis,et al. An improved approximation algorithm for the column subset selection problem , 2008, SODA.
[9] Michael W. Mahoney,et al. A randomized algorithm for a tensor-based generalization of the singular value decomposition , 2007 .
[10] Charalampos E. Tsourakakis. MACH: Fast Randomized Tensor Decompositions , 2009, SDM.
[11] C. Pan. On the existence and computation of rank-revealing LU factorizations , 2000 .
[12] Arvind K. Saibaba,et al. HOID: Higher Order Interpolatory Decomposition for Tensors Based on Tucker Representation , 2015, SIAM J. Matrix Anal. Appl..
[13] VandewalleJoos,et al. On the Best Rank-1 and Rank-(R1,R2,. . .,RN) Approximation of Higher-Order Tensors , 2000 .
[14] C. Chui,et al. Article in Press Applied and Computational Harmonic Analysis a Randomized Algorithm for the Decomposition of Matrices , 2022 .
[15] Yimin Wei,et al. Theory and Computation of Complex Tensors and its Applications , 2020 .
[16] Amir Averbuch,et al. Randomized LU Decomposition , 2013, ArXiv.
[17] Berkant Savas,et al. Quasi-Newton Methods on Grassmannians and Multilinear Approximations of Tensors , 2009, SIAM J. Sci. Comput..
[18] C. Pan,et al. Rank-Revealing QR Factorizations and the Singular Value Decomposition , 1992 .
[19] T. Chan. Rank revealing QR factorizations , 1987 .
[20] V. Rokhlin,et al. A randomized algorithm for the approximation of matrices , 2006 .
[21] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[22] Yang Guo,et al. Low-Rank Tucker Approximation of a Tensor From Streaming Data , 2019, SIAM J. Math. Data Sci..
[23] Xingyu Wang,et al. Fast nonnegative tensor factorization based on accelerated proximal gradient and low-rank approximation , 2016, Neurocomputing.
[24] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[25] Andrzej Cichocki,et al. Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation , 2012, IEEE Transactions on Signal Processing.
[26] Arvind K. Saibaba,et al. Randomized algorithms for low-rank tensor decompositions in the Tucker format , 2019, SIAM J. Math. Data Sci..
[27] Lieven De Lathauwer,et al. Low multilinear rank tensor approximation via semidefinite programming , 2009, 2009 17th European Signal Processing Conference.
[28] L. Lathauwer,et al. On the best low multilinear rank approximation of higher-order tensors , 2010 .
[29] Andrzej Cichocki,et al. Decomposition of Big Tensors With Low Multilinear Rank , 2014, ArXiv.
[30] Nico Vervliet,et al. Breaking the Curse of Dimensionality Using Decompositions of Incomplete Tensors: Tensor-based scientific computing in big data analysis , 2014, IEEE Signal Processing Magazine.
[31] P. Tang,et al. Bounds on Singular Values Revealed by QR Factorizations , 1999 .
[32] Andrzej Cichocki,et al. Efficient Nonnegative Tucker Decompositions: Algorithms and Uniqueness , 2014, IEEE Transactions on Image Processing.
[33] Berkant Savas,et al. Handwritten digit classification using higher order singular value decomposition , 2007, Pattern Recognit..
[34] Yoshua Bengio,et al. Gradient-based learning applied to document recognition , 1998, Proc. IEEE.
[35] Andrzej Cichocki,et al. Randomized Algorithms for Computation of Tucker Decomposition and Higher Order SVD (HOSVD) , 2021, IEEE Access.
[36] Ming Gu,et al. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..
[37] Berkant Savas,et al. A Newton-Grassmann Method for Computing the Best Multilinear Rank-(r1, r2, r3) Approximation of a Tensor , 2009, SIAM J. Matrix Anal. Appl..
[38] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .
[39] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[40] Eugene E. Tyrtyshnikov,et al. Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..
[41] Sabine Van Huffel,et al. Best Low Multilinear Rank Approximation of Higher-Order Tensors, Based on the Riemannian Trust-Region Scheme , 2011, SIAM J. Matrix Anal. Appl..
[42] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[43] Pierre Comon,et al. Tensor Decompositions, State of the Art and Applications , 2002 .
[44] M. Rudelson,et al. The smallest singular value of a random rectangular matrix , 2008, 0802.3956.
[45] Andrzej Cichocki,et al. Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.
[46] Nico Vervliet,et al. A Randomized Block Sampling Approach to Canonical Polyadic Decomposition of Large-Scale Tensors , 2016, IEEE Journal of Selected Topics in Signal Processing.
[47] V. Rokhlin,et al. A fast randomized algorithm for the approximation of matrices ✩ , 2007 .
[48] S. Goreinov,et al. The maximum-volume concept in approximation by low-rank matrices , 2001 .
[49] Santosh S. Vempala,et al. Matrix approximation and projective clustering via volume sampling , 2006, SODA '06.
[50] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[51] Sjsu ScholarWorks,et al. Rank revealing QR factorizations , 2014 .
[52] Trac D. Tran,et al. Tensor sparsification via a bound on the spectral norm of random tensors , 2010, ArXiv.
[53] Michael W. Mahoney. Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..
[54] Michael P. Friedlander,et al. Computing non-negative tensor factorizations , 2008, Optim. Methods Softw..
[55] Andrzej Cichocki,et al. Nonnegative Matrix and Tensor Factorization T , 2007 .
[56] Danny C. Sorensen,et al. A DEIM Induced CUR Factorization , 2014, SIAM J. Sci. Comput..
[57] A. Cichocki,et al. Generalizing the column–row matrix decomposition to multi-way arrays , 2010 .
[58] Omar Rivasplata,et al. Smallest singular value of sparse random matrices , 2011, 1106.0938.
[59] Daniel Kressner,et al. Recompression of Hadamard Products of Tensors in Tucker Format , 2017, SIAM J. Sci. Comput..
[60] Berkant Savas,et al. Krylov-Type Methods for Tensor Computations , 2010, 1005.0683.
[61] P. Alam. ‘A’ , 2021, Composites Engineering: An A–Z Guide.
[62] M. Rudelson,et al. Smallest singular value of random matrices and geometry of random polytopes , 2005 .
[63] Xuezhong Wang,et al. Tensor neural network models for tensor singular value decompositions , 2020, Computational Optimization and Applications.
[64] Tamara G. Kolda,et al. A Practical Randomized CP Tensor Decomposition , 2017, SIAM J. Matrix Anal. Appl..
[65] Ivan V. Oseledets,et al. Wedderburn Rank Reduction and Krylov Subspace Method for Tensor Approximation. Part 1: Tucker Case , 2010, SIAM J. Sci. Comput..
[66] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[67] G. W. Stewart,et al. Four algorithms for the the efficient computation of truncated pivoted QR approximations to a sparse matrix , 1999, Numerische Mathematik.