The Optimal Defense of Networks of Targets

This paper examines a game-theoretic model of attack and defense of multiple networks of targets in which there exist intra-network strategic complementarities among targets. The defender’s objective is to successfully defend all of the networks and the attacker’s objective is to successfully attack at least one network of targets. In this context, our results highlight the importance of modeling asymmetric attack and defense as a conflict between “fully” strategic actors with endogenous entry and force expenditure decisions as well as allowing for general correlation structures for force expenditures within and across the networks of targets.

[1]  B. Roberson The Colonel Blotto game , 2006 .

[2]  Yeon-Koo Che,et al.  Caps on Political Lobbying: Reply , 2006 .

[3]  Wolfgang Leininger,et al.  Asymmetric All-Pay Auctions with Incomplete Information: The Two-Player Case , 1996 .

[4]  Kjell Hausken Strategic defense and attack for series and parallel reliability systems , 2008, Eur. J. Oper. Res..

[5]  Berthold Schweizer,et al.  Probabilistic Metric Spaces , 2011 .

[6]  Tilman Klumpp,et al.  Primaries and the New Hampshire Effect , 2006 .

[7]  B. Moldovanu,et al.  The Optimal Allocation of Prizes in Contests , 2001 .

[8]  In-Gyu Kim,et al.  Bidding for a group-specific public-good prize , 2001 .

[9]  Ian Gale,et al.  Exclusion in all-pay auctions , 1994 .

[10]  J. Snyder Election Goals and the Allocation of Campaign Resources , 1989 .

[11]  Fangzhen Lin,et al.  Designing competitions between teams of individuals , 2010, Artif. Intell..

[12]  S. Goyal,et al.  Attack, Defence, and Contagion in Networks , 2014 .

[13]  J. Hirshleifer From weakest-link to best-shot: The voluntary provision of public goods , 1983 .

[14]  Dan Kovenock,et al.  Terrorism and the Optimal Defense of Networks of Targets , 2008 .

[15]  Roman M. Sheremeta,et al.  The attack and defense of weakest-link networks , 2010, Public Choice.

[16]  Balázs Szentes,et al.  Beyond chopsticks: Symmetric equilibria in majority auction games , 2003, Games Econ. Behav..

[17]  Dan Bernhardt,et al.  Non-convexities and the gains from concealing defenses from committed terrorists , 2010 .

[18]  Marco Scarsini,et al.  A Colonel Blotto Gladiator Game , 2012, Math. Oper. Res..

[19]  Dmitriy Kvasov,et al.  Contests with limited resources , 2007, J. Econ. Theory.

[20]  R. Powell Defending against Terrorist Attacks with Limited Resources , 2007, American Political Science Review.

[21]  Ron Siegel,et al.  All-Pay Contests , 2009 .

[22]  Christian Ewerhart A “fractal” solution to the chopstick auction , 2017, Economic Theory.

[23]  Asuman E. Ozdaglar,et al.  Network Security and Contagion , 2013, PERV.

[24]  Jonathan Weinstein,et al.  Two Notes on the Blotto Game , 2012 .

[25]  K. D. Jaegher,et al.  Strategic Network Disruption and Defense , 2016 .

[26]  Balázs Szentes,et al.  Three-object two-bidder simultaneous auctions: chopsticks and tetrahedra , 2003, Games Econ. Behav..

[27]  Shmuel Nitzan,et al.  Rent-seeking for pure public goods , 1990 .

[28]  Brian Roberson,et al.  Pork-Barrel Politics, Targetable Policies, and Fiscal Federalism , 2008 .

[29]  Nick Mastronardi,et al.  Waging simple wars: a complete characterization of two-battlefield Blotto equilibria , 2015 .

[30]  Larry Samuelson,et al.  Choosing What to Protect: Strategic Defensive Allocation Against an Unknown Attacker , 2005 .

[31]  Jean-François Laslier,et al.  How two-party competition treats minorities , 2002 .

[32]  Kjell Hausken,et al.  Strategic Defense and Attack of Complex Networks , 2007, WEIS.

[33]  J. Morgan,et al.  An Analysis of the War of Attrition and the All-Pay Auction , 1997 .

[34]  Scott E. Page,et al.  General Blotto: games of allocative strategic mismatch , 2009 .

[35]  Benny Moldovanu,et al.  Contest architecture , 2006, J. Econ. Theory.

[36]  Christian Ewerhart,et al.  Contests with Small Noise and the Robustness of the All-Pay Auction , 2017, Games Econ. Behav..

[37]  David Wettstein,et al.  Caps on Political Lobbying: Comment , 2006 .

[38]  S. Goyal,et al.  How do you defend a network , 2017 .

[39]  Sergiu Hart,et al.  Discrete Colonel Blotto and General Lotto games , 2008, Int. J. Game Theory.

[40]  Robert Powell,et al.  Allocating Defensive Resources with Private Information about Vulnerability , 2007, American Political Science Review.

[41]  Subhasish M. Chowdhury,et al.  Best-shot versus weakest-link in political lobbying: an application of group all-pay auction , 2016, Social Choice and Welfare.

[42]  É. Borel The Theory of Play and Integral Equations with Skew Symmetric Kernels , 1953 .

[43]  Dan Kovenock,et al.  Weakest‐link attacker‐defender games with multiple attack technologies , 2012 .

[44]  Vicki M. Bier,et al.  Optimal Allocation of Resources for Defense of Simple Series and Parallel Systems from Determined Adversaries , 2003 .

[45]  R. Nelsen An Introduction to Copulas , 1998 .

[46]  Jean-François Laslier,et al.  Distributive Politics and Electoral Competition , 2002, J. Econ. Theory.

[47]  Marcin Dziubinski,et al.  Network Design and Defence , 2012, Games Econ. Behav..

[48]  Subhasish M. Chowdhury,et al.  The Max-Min Group Contest: Weakest-link (Group) All-pay Auction , 2016 .

[49]  Kai A. Konrad,et al.  Investment in the absence of property rights : the role of incumbency advantages , 2018 .

[50]  Michael R. Baye,et al.  The all-pay auction with complete information , 1990 .

[51]  Kai A. Konrad,et al.  Targeted Campaign Competition, Loyal Voters, and Supermajorities , 2014, SSRN Electronic Journal.

[52]  Caroline D. Thomas,et al.  N-Dimensional Blotto Game with Asymmetric Battlefield Values , 2016 .

[53]  David A. Malueg,et al.  The best-shot all-pay (group) auction with complete information , 2013 .

[54]  M. Naceur Azaiez,et al.  Optimal resource allocation for security in reliability systems , 2007, Eur. J. Oper. Res..

[55]  Vicki M. Bier,et al.  Protection of simple series and parallel systems with components of different values , 2005, Reliab. Eng. Syst. Saf..

[56]  Kyung Hwan Baik,et al.  Contests with group-specific public-good prizes , 2007, Soc. Choice Welf..

[57]  Sylvain Béal,et al.  Average tree solutions and the distribution of Harsanyi dividends , 2011, Int. J. Game Theory.

[58]  Aniol Llorente-Saguer,et al.  A Simple Mechanism for Resolving Conflict , 2008, Games Econ. Behav..

[59]  Iryna Topolyan,et al.  Rent-seeking for a public good with additive contributions , 2014, Soc. Choice Welf..

[60]  B. Roberson,et al.  The non-constant-sum Colonel Blotto game , 2008, SSRN Electronic Journal.

[61]  M. Kolmar,et al.  Contests with group-specific public goods and complementarities in efforts , 2013 .

[62]  Subhasish M. Chowdhury,et al.  The Attack‐And‐Defense Group Contests: Best Shot Versus Weakest Link , 2016 .

[63]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[64]  Aniol Llorente-Saguer,et al.  Pure strategy Nash equilibria in non-zero sum colonel Blotto games , 2012, Int. J. Game Theory.

[65]  T. Sandler,et al.  Too Much of a Good Thing? , 2004 .

[66]  Dongryul Lee,et al.  Weakest-link contests with group-specific public good prizes , 2012 .

[67]  Roman M. Sheremeta,et al.  Top guns may not fire: Best-shot group contests with group-specific public good prizes , 2013 .

[68]  Marcin Dziubinski,et al.  Non-symmetric discrete General Lotto games , 2013, Int. J. Game Theory.