Computation of the Marcum Q-function

Methods and an algorithm for computing the generalized Marcum $Q-$function ($Q_{\mu}(x,y)$) and the complementary function ($P_{\mu}(x,y)$) are described. These functions appear in problems of different technical and scientific areas such as, for example, radar detection and communications, statistics and probability theory, where they are called the non-central chi-square or the non central gamma cumulative distribution functions. The algorithm for computing the Marcum functions combines different methods of evaluation in different regions: series expansions, integral representations, asymptotic expansions, and use of three-term homogeneous recurrence relations. A relative accuracy close to $10^{-12}$ can be obtained in the parameter region $(x,y,\mu) \in [0,\,A]\times [0,\,A]\times [1,\,A]$, $A=200$, while for larger parameters the accuracy decreases (close to $10^{-11}$ for $A=1000$ and close to $5\times 10^{-11}$ for $A=10000$).

[1]  G. H. Robertson Computation of the noncentral chi-square distribution , 1969 .

[2]  David A. Shnidman,et al.  The calculation of the probability of detection and the generalized Marcum Q-function , 1989, IEEE Trans. Inf. Theory.

[3]  Jess Marcum,et al.  A statistical theory of target detection by pulsed radar , 1948, IRE Trans. Inf. Theory.

[4]  N. Temme,et al.  A double integral containing the modified Bessel function: Asymptotics and computation , 1986 .

[5]  Carl W. Helstrom,et al.  Computing the generalized Marcum Q-function , 1992, IEEE Trans. Inf. Theory.

[6]  Stephen O. Rice,et al.  Uniform asymptotic expansions for saddle point integrals — Application to a probability distribution occurring in noise theory , 1968 .

[7]  A. Kamel,et al.  On the Computation of Non-Central Chi-Square Distribution Function , 1990 .

[8]  Nico M. Temme,et al.  Numerical methods for special functions , 2007 .

[9]  Nico M. Temme,et al.  Efficient and Accurate Algorithms for the Computation and Inversion of the Incomplete Gamma Function Ratios , 2012, SIAM J. Sci. Comput..

[10]  Nico M. Temme,et al.  Recent software developments for special functions in the Santander-Amsterdam project , 2014, Sci. Comput. Program..

[11]  Jonathan D. Cohen Noncentral Chi-Square: Some Observations on Recurrence , 1988 .

[12]  Richard B. Paris,et al.  Incomplete gamma and related functions , 2010, NIST Handbook of Mathematical Functions.

[13]  G. H. Robertson,et al.  Computation of the Noncentral F Distribution (CFAR)Detection , 1976, IEEE Transactions on Aerospace and Electronic Systems.

[14]  Leo Knüsel,et al.  Computation of the Noncentral Gamma Distribution , 1996, SIAM J. Sci. Comput..

[15]  S. Dyrting Evaluating the Noncentral Chi-Square Distribution for the Cox-Ingersoll-Ross Process , 2004 .

[16]  Arthur H. M. Ross,et al.  Algorithm for Calculating the Noncentral Chi-Square Distribution , 1999, IEEE Trans. Inf. Theory.

[17]  F. Olver Asymptotics and Special Functions , 1974 .

[18]  Nico M. Temme,et al.  Asymptotic and numerical aspects of the noncentral chi-square distribution , 1993 .

[19]  Norman Bleistein,et al.  Uniform asymptotic expansions of integrals with stationary point near algebraic singularity , 1966 .

[20]  Walter Gautschi Recursive Computation of Certain Integrals , 1961, JACM.

[21]  Feng Qi,et al.  Monotonicity Results and Inequalities for the Gamma and Incomplete Gamma Functions , 2002 .