Examining the Spectral Separability of Prosopis glandulosa from Co-Existent Species Using Field Spectral Measurement and Guided Regularized Random Forest

The invasive taxa of Prosopis is rated the world’s top 100 unwanted species, and a lack of spatial data about the invasion dynamics has made the current control and monitoring methods unsuccessful. This study thus tests the use of in situ spectroscopy data with a newly-developed algorithm, guided regularized random forest (GRRF), to spectrally discriminate Prosopis from coexistent acacia species (Acacia karroo, Acacia mellifera and Ziziphus mucronata) in the arid environment of South Africa. Results show that GRRF was able to reduce the high dimensionality of the spectroscopy data and select key wavelengths (n = 11) for discriminating amongst the species. These wavelengths are located at 356.3 nm, 468.5 nm, 531.1 nm, 665.2 nm, 1262.3 nm, 1354.1 nm, 1361.7 nm, 1376.9 nm, 1407.1 nm, 1410.9 nm and 1414.6 nm. The use of these selected wavelengths increases the overall classification accuracy from 79.19% and a Kappa value of 0.7201 when using all wavelengths to 88.59% and a Kappa of 0.8524 when the selected wavelengths were used. Based on our relatively high accuracies and ease of use, it is worth considering the GRRF method for reducing the high dimensionality of spectroscopy data. However, this assertion should receive considerable additional testing and comparison before it is accepted as a substitute for reliable high dimensionality reduction.

[1]  F. Tian,et al.  Predicting liquid chromatographic retention times of peptides from the Drosophila melanogaster proteome by machine learning approaches. , 2009, Analytica chimica acta.

[2]  Nigel P. Fox,et al.  Progress in Field Spectroscopy , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[3]  William G. Kepner,et al.  Hydrological impacts of mesquite encroachment in the upper San Pedro watershed , 2012 .

[4]  Soo Chin Liew,et al.  Hyperspectral land cover classification of EO-1 Hyperion data by principal component analysis and pixel unmixing , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[5]  M. F. Chikuni,et al.  Prosopis glandulosa Torrey (leguminosae-Mimosoidae) at Swang'oma, Lake Chilwa plain: A blessing in disguise? , 2005 .

[6]  Mahesh Pal,et al.  Random forest classifier for remote sensing classification , 2005 .

[7]  S. Vincenzi,et al.  Application of a Random Forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy , 2011 .

[8]  J. Qi,et al.  A comparative analysis of broadband and narrowband derived vegetation indices in predicting LAI and CCD of a cotton canopy , 2007 .

[9]  P. Groves,et al.  Methodology For Hyperspectral Band Selection , 2004 .

[10]  S. Kibet,et al.  Impact of Prosopis juliflora on Kenya's semi-arid and arid ecosystems and local livelihoods , 2009 .

[11]  Ahmed Ibrahim Awale,et al.  Proliferation of honey mesquite(prosopis juliflora) in Somaliland:Opportunities and challenges , 2006 .

[12]  Liang Liang,et al.  Identification of understory invasive exotic plants with remote sensing in urban forests , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[13]  Jean-Michel Poggi,et al.  Variable selection using random forests , 2010, Pattern Recognit. Lett..

[14]  J. S. Borges,et al.  Evaluation of feature extraction and reduction methods for hyperspectral images , 2007 .

[15]  Zeila Dubow Abdi Mapping and managing the spread of Prosopis Juliflora in Garissa County, Kenya , 2011 .

[16]  Simon N. Stuart,et al.  2004 IUCN Red List of Threatened Species: A Global Species Assessment edited by Jonathan E.M. Baillie, Craig Hilton-Taylor & Simon N. Stuart (2004), xxiii + 191 pp., IUCN, Gland, Switzerland and Cambridge, UK. ISBN 2 8317 0826 5 (pbk), £18.50. , 2005, Oryx.

[17]  F. Artigas,et al.  Hyperspectral remote sensing of marsh species and plant vigour gradient in the New Jersey Meadowlands , 2005 .

[18]  Sandra Lowe,et al.  Classification Methods For Remotely Sensed Data , 2016 .

[19]  George C. Runger,et al.  Feature selection via regularized trees , 2012, The 2012 International Joint Conference on Neural Networks (IJCNN).

[20]  S. Tarantola,et al.  Detecting vegetation leaf water content using reflectance in the optical domain , 2001 .

[21]  Q. Qin,et al.  Modified perpendicular drought index (MPDI): a real-time drought monitoring method , 2007 .

[22]  Paul M. Mather,et al.  The role of feature selection in artificial neural network applications , 2002 .

[23]  Guangya Zhang,et al.  Discriminating acidic and alkaline enzymes using a random forest model with secondary structure amino acid composition , 2009 .

[24]  A. Alavi,et al.  Opportunities and Challenges , 1998, In Vitro Diagnostic Industry in China.

[25]  Xin Lu,et al.  A random forest of combined features in the classification of cut tobacco based on gas chromatography fingerprinting. , 2010, Talanta.

[26]  O. Mutanga,et al.  Discriminating indicator grass species for rangeland degradation assessment using hyperspectral data resampled to AISA Eagle resolution , 2012 .

[27]  K. Moffett,et al.  Remote Sens , 2015 .

[28]  G. Shaw,et al.  Signal processing for hyperspectral image exploitation , 2002, IEEE Signal Process. Mag..

[29]  R. K. Mampholo,et al.  To determine the extent of bush encroachment with focus on Prosopis species on selected farms in the Vryburg district of North West Province , 2006 .

[30]  Pai-Hui Hsu,et al.  Feature extraction of hyperspectral images using wavelet and matching pursuit , 2007 .

[31]  John H. Hoffmann,et al.  Establishment ofNeltumius arizonensis(Coleoptera: Bruchidae) on Mesquite (ProsopisSpecies: Mimosaceae) in South Africa☆ , 1997 .

[32]  Jörn P.E. Laxén,et al.  Is prosopis a curse or a blessing? : An ecological economic analysis of an invasive alien tree species in Sudan. , 2007 .

[33]  M. A. Elfadl,et al.  Field studies on the ecological strategies of Prosopis juliflora in a dryland ecosystem 1. A leaf gas exchange approach , 2006 .

[34]  Milena Holmgren,et al.  The Prosopis juliflora–Prosopis pallida Complex: A Monograph , 2003 .

[35]  Onisimo Mutanga,et al.  Spectral resampling based on user-defined inter-band correlation filter: C3 and C4 grass species classification , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[36]  Witold R. Rudnicki,et al.  Feature Selection with the Boruta Package , 2010 .

[37]  N. Barker,et al.  Species limits in Vachellia (Acacia) karroo (Mimosoideae: Leguminoseae): Evidence from automated ISSR DNA “fingerprinting” , 2012 .

[38]  Lalit Kumar,et al.  Imaging Spectrometry and Vegetation Science , 2001 .

[39]  Buho Hoshino,et al.  Evaluating the Invasion Strategic of Mesquite (Prosopis juliflora) in Eastern Sudan Using Remotely Sensed Technique (THE 1st INTERNATIONAL CONFERENCE ON ARID LAND (ICAL 1) "DESERT TECHNOLOGY X (DT X)") , 2012 .

[40]  G. N. Smit,et al.  Soil enrichment by Acacia mellifera subsp. detinens on nutrient poor sandy soil in a semi-arid southern African savanna , 2005 .

[41]  Onisimo Mutanga,et al.  Determining the susceptibility of Eucalyptus nitens forests to Coryphodema tristis (cossid moth) occurrence in Mpumalanga, South Africa , 2013, Int. J. Geogr. Inf. Sci..

[42]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[43]  G. Carter Ratios of leaf reflectances in narrow wavebands as indicators of plant stress , 1994 .

[44]  L. Karthik,et al.  In vitro antibacterial activity and gas chromatography–mass spectroscopy analysis of Acacia karoo and Ziziphus mauritiana extracts , 2015 .

[45]  O. Mutanga,et al.  Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression , 2014 .

[46]  D. Geesing,et al.  Management of introduced Prosopis species: can economic exploitation control an invasive species? , 2004 .

[47]  Marina Fruehauf Classification Methods For Remotely Sensed Data , 2016 .

[48]  A. Zeileis,et al.  Danger: High Power! – Exploring the Statistical Properties of a Test for Random Forest Variable Importance , 2008 .

[49]  John H. Hoffmann,et al.  Biological Control of Mesquite (Prosopis Species) (Fabaceae) in South Africa , 2011 .

[50]  Jan de Leeuw,et al.  Discriminating species using hyperspectral indices at leaf and canopy scales. The International Arch , 2007 .

[51]  Onisimo Mutanga,et al.  Field spectrometry of papyrus vegetation (Cyperus papyrus L.) in swamp wetlands of St Lucia, South Africa , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[52]  R Osmond Mesquite best practice manual: control and management options for mesquite (Prosopis spp.) in Australia , 2003 .

[53]  Achim Zeileis,et al.  Bias in random forest variable importance measures: Illustrations, sources and a solution , 2007, BMC Bioinformatics.

[54]  Demel Teketay,et al.  Some biological characteristics that foster the invasion of Prosopis juliflora (Sw.) DC. at Middle Awash Rift Valley Area, north-eastern Ethiopia , 2004 .

[55]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[56]  D. Maitre,et al.  Costs, benefits and management options for an invasive alien tree species: The case of mesquite in the Northern Cape, South Africa , 2012 .

[57]  Roberta E. Martin,et al.  Remote sensing of native and invasive species in Hawaiian forests , 2008 .

[58]  D. Richardson,et al.  Prosopis: a global assessment of the biogeography, benefits, impacts and management of one of the world's worst woody invasive plant taxa , 2014, AoB PLANTS.

[59]  Achim Zeileis,et al.  BMC Bioinformatics BioMed Central Methodology article Conditional variable importance for random forests , 2008 .

[60]  Riyad Ismail,et al.  Random forest regression for sugarcane yield prediction based on Landsat TM derived spectral parameters , 2012 .

[61]  Jonathan Cheung-Wai Chan,et al.  Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery , 2008 .

[62]  B. Swallow,et al.  Invasion of prosopis juliflora and local livelihoods: case study from the Lake Baringo area of Kenya , 2005 .

[63]  M. C. Rutherford,et al.  The vegetation of South Africa, Lesotho and Swaziland. , 2006 .

[64]  J. C. Tewari,et al.  The Prosopis juliflora - Prosopis pallida complex: a monograph , 2001 .

[65]  David M. Richardson,et al.  Alien plant invasions in South Africa: driving forces and the human dimension , 2004 .

[66]  O. Mutanga,et al.  Discriminating the papyrus vegetation (Cyperus papyrus L.) and its co-existent species using random forest and hyperspectral data resampled to HYMAP , 2012 .

[67]  George C. Runger,et al.  Gene selection with guided regularized random forest , 2012, Pattern Recognit..

[68]  H. G. Zimmermann,et al.  Biological control of mesquite, Prosopis spp. (Fabaceae), in South Africa , 1991 .

[69]  Onisimo Mutanga,et al.  Discriminating the early stages of Sirex noctilio infestation using classification tree ensembles and shortwave infrared bands , 2011 .

[70]  Andrew K. Skidmore,et al.  Predicting foliar biochemistry of tea (Camellia sinensis) using reflectance spectra measured at powder, leaf and canopy levels , 2013 .

[71]  Ramón Díaz-Uriarte,et al.  Gene selection and classification of microarray data using random forest , 2006, BMC Bioinformatics.

[72]  J. H. van den Berg,et al.  Detection, Quantification and Monitoring of Prosopis in the Northern Cape Province of South Africa using Remote Sensing and GIS , 2013 .

[73]  O. Mutanga,et al.  Spectral discrimination of papyrus vegetation (Cyperus papyrus L.) in swamp wetlands using field spectrometry , 2009 .

[74]  Elfatih M. Abdel-Rahman,et al.  Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data , 2013 .

[75]  Brian L. Markham,et al.  EO-1 Hyperion hyperspectral aggregation and comparison with EO-1 Advanced Land Imager and Landsat 7 ETM+ , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[76]  Houtao Deng,et al.  Guided Random Forest in the RRF Package , 2013, ArXiv.

[77]  Carlos Roberto de Souza Filho,et al.  Mapping invasive species and spectral mixture relationships with neotropical woody formations in southeastern Brazil , 2015 .

[78]  N. Pasiecznik,et al.  Prosopis - pest or providence, weed or wonder tree? , 1999 .

[79]  Linda Anderson,et al.  Mapping Mesquite (Prosopis) Distribution and Density Using Visual Aerial Surveys , 2007 .