MICAtronics: A new platform for flexible X-tronics

Abstract In the present era of “Internet-of-Things”, the demand for flexible, light-weight, low-cost, low-power consumption, multifunctional, and environmentally friendly electronics has moved to the forefront of materials science research. Numerous compounds with unique material properties in epitaxial thin film form hold key to future technologies. van der Waals epitaxy (vdWE) involving two-dimensional layered materials can play a crucial role in the expansion of thin film epitaxy by overcoming the bottleneck of material combinations due to lattice/thermal matching conditions inherent to conventional epitaxy. Among the layered materials, mica is a well-known phyllosilicate mineral that can have a remarkable impact on flexible electronics. We confine ourselves to the validity of vdWE of functional oxides on muscovite mica throughout this treatise. These heterostructures with excellent properties are flexible and exhibit high-temperature stability. With such demonstrations, it is anticipated that MICAtronics, vdWE on mica, can reveal unusual properties and emergent phenomena in the realm of high-performance flexible device applications.

[1]  Asif Islam Khan,et al.  Single crystal functional oxides on silicon , 2015, Nature Communications.

[2]  S. Ramanathan,et al.  Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions , 2011 .

[3]  Sang Yeol Lee,et al.  Electrical, structural, and optical properties of ITO thin films prepared at room temperature by pulsed laser deposition , 2006 .

[4]  Zhiwei Hu,et al.  Strong magnetic enhancement in self-assembled multiferroic-ferrimagnetic nanostructures. , 2013, Nanoscale.

[5]  M. Prato,et al.  Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. , 2015, Nanoscale.

[6]  L. Nyholm,et al.  Toward Flexible Polymer and Paper‐Based Energy Storage Devices , 2011, Advanced materials.

[7]  Y. Ueda,et al.  Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. , 2010, Physical review letters.

[8]  P. Dutta,et al.  Handbook of Layered Materials , 2004 .

[9]  Seung Hwan Ko,et al.  Low‐Cost Facile Fabrication of Flexible Transparent Copper Electrodes by Nanosecond Laser Ablation , 2015, Advanced materials.

[10]  K. Harris,et al.  Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies , 2016, Journal of Materials Science.

[11]  Byung-Gyu Chae,et al.  Monoclinic and correlated metal phase in VO(2) as evidence of the Mott transition: coherent phonon analysis. , 2006, Physical review letters.

[12]  K. Ellmer Past achievements and future challenges in the development of optically transparent electrodes , 2012, Nature Photonics.

[13]  J. Chu,et al.  Temperature dependent phonon Raman scattering of highly a-axis oriented CoFe2O4 inverse spinel ferromagnetic films grown by pulsed laser deposition , 2012 .

[14]  Tien-Chai Lin,et al.  Electrical and optical properties of indium tin oxide films prepared on plastic substrates by radio frequency magnetron sputtering , 2008 .

[15]  S. Ray,et al.  Properties of tin doped indium oxide thin films prepared by magnetron sputtering , 1983 .

[16]  W. Dang,et al.  Controlled synthesis of topological insulator nanoplate arrays on mica. , 2012, Journal of the American Chemical Society.

[17]  Yiwei Liu,et al.  Preparation and ferroelectric properties of freestanding Pb(Zr,Ti)O3 thin membranes , 2012 .

[18]  Chen Feng,et al.  Flexible, Stretchable, Transparent Conducting Films Made from Superaligned Carbon Nanotubes , 2010 .

[19]  J. Maultzsch,et al.  Molecular beam growth of micrometer-size graphene on mica , 2013 .

[20]  A. Winkler,et al.  The influence of potassium on the growth of ultra-thin films of para-hexaphenyl on muscovite mica(001). , 2012, The Journal of chemical physics.

[21]  R. Ramírez-Bon,et al.  Indium tin oxide films deposited on polyethylene naphthalate substrates by radio frequency magnetron sputtering , 2009 .

[22]  Edwin O. Ortiz-Quiles,et al.  Exfoliated molybdenum disulfide for dye sensitized solar cells , 2017 .

[23]  H. Sakata,et al.  Electrical properties of Sn-doped In2O3 prepared by reactive evaporation , 1981 .

[24]  Tae-Wook Kim,et al.  Stable Switching Characteristics of Organic Nonvolatile Memory on a Bent Flexible Substrate , 2010, Advanced materials.

[25]  Sahand Hormoz,et al.  Limits on vanadium oxide Mott metal–insulator transition field-effect transistors , 2010 .

[26]  J. Horwitz,et al.  Highly oriented indium tin oxide films for high efficiency organic light-emitting diodes , 2002 .

[27]  Atsushi Koma,et al.  Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system , 1992 .

[28]  Y. Chu,et al.  Misorientation control and functionality design of nanopillars in self-assembled perovskite-spinel heteroepitaxial nanostructures. , 2011, ACS nano.

[29]  Seunghoon Nam,et al.  Optical and electronic properties of post-annealed ZnO:Al thin films , 2010 .

[30]  V. Crespi,et al.  Comparing frustrated and unfrustrated clusters of single-domain ferromagnetic islands , 2010 .

[31]  A. Kingon,et al.  Activated Solutions Enabling Low‐Temperature Processing of Functional Ferroelectric Oxides for Flexible Electronics , 2014, Advanced materials.

[32]  H. Ohta,et al.  Surface morphology and crystal quality of low resistive indium tin oxide grown on yittria-stabilized zirconia , 2002 .

[33]  K. Ueno,et al.  Heteroepitaxial growth by Van der Waals interaction in one-, two- and three-dimensional materials , 1991 .

[34]  Seyoung Kee,et al.  Highly Conductive All‐Plastic Electrodes Fabricated Using a Novel Chemically Controlled Transfer‐Printing Method , 2015, Advanced materials.

[35]  C. Nan,et al.  Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions , 2008, Progress in Advanced Dielectrics.

[36]  L. Martin,et al.  Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films , 2010 .

[37]  Zhong Lin Wang,et al.  High temperature processed ZnO nanorods using flexible and transparent mica substrates for dye-sensitized solar cells and piezoelectric nanogenerators , 2014 .

[38]  Bruce E. Gnade,et al.  Optimization of poly(vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics , 2010 .

[39]  Gyungock Kim,et al.  Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices , 2005 .

[40]  Gun-Hwan Lee,et al.  Preparation of high quality ITO films on a plastic substrate using RF magnetron sputtering , 2006 .

[41]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[42]  Chao Yang,et al.  Preparation and properties of AZO thin films on different substrates , 2010 .

[43]  M. Kawasaki,et al.  Collective bulk carrier delocalization driven by electrostatic surface charge accumulation , 2012, Nature.

[44]  R. Delamare,et al.  Growth of epitaxial tungsten oxide nanorods , 2005, cond-mat/0506533.

[45]  Qihua Xiong,et al.  Epitaxial II-VI tripod nanocrystals: a generalization of van der Waals epitaxy for nonplanar polytypic nanoarchitectures. , 2012, ACS nano.

[46]  Rongjin Li,et al.  2D Mica Crystal as Electret in Organic Field‐Effect Transistors for Multistate Memory , 2016, Advanced materials.

[47]  Z. Yin,et al.  Fabrication of Flexible, All‐Reduced Graphene Oxide Non‐Volatile Memory Devices , 2013, Advances in Materials.

[48]  A. Hippel,et al.  DIELECTRIC SPECTROSCOPY OF FERROMAGNETIC SEMICONDUCTORS , 1957 .

[49]  T. Dhakal,et al.  Magnetic anisotropy and field switching in cobalt ferrite thin films deposited by pulsed laser ablation , 2010 .

[50]  P. Chiu,et al.  Flexible ferroelectric element based on van der Waals heteroepitaxy , 2017, Science Advances.

[51]  Yong-Sik Lim,et al.  Observation of First-Order Metal-Insulator Transition without Structural Phase Transition in VO_2 , 2004, cond-mat/0402485.

[52]  A. Williams,et al.  Anisotropy and Magnetostriction of Some Ferrites , 1955 .

[53]  Po-Wen Chiu,et al.  van der Waal Epitaxy of Flexible and Transparent VO2 Film on Muscovite , 2016 .

[54]  Akio Suzuki,et al.  Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition , 2003 .

[55]  H. Ohta,et al.  Highly electrically conductive indium–tin–oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition , 2000 .

[56]  R. Srivastava,et al.  Raman Spectrum of Semiconducting and Metallic V O 2 , 1971 .

[57]  Muhammad M. Hussain,et al.  CMOS‐Technology‐Enabled Flexible and Stretchable Electronics for Internet of Everything Applications , 2016, Advanced materials.

[58]  W. Hu,et al.  Mica, a Potential Two‐Dimensional‐Crystal Gate Insulator for Organic Field‐Effect Transistors , 2011, Advanced materials.

[59]  Y. Chu,et al.  Quantitative determination of anisotropic magnetoelectric coupling in BiFeO$_{3}$-CoFe$_{2}$O$_{4}$ nanostructures , 2010, 1008.1481.

[60]  D. Schryvers,et al.  Electronically decoupled stacking fault tetrahedra embedded in Au(111) films , 2016, Nature Communications.

[61]  R. Mallet,et al.  On physical properties of undoped and Al and In doped zinc oxide films deposited on PET substrates by reactive pulsed laser deposition , 2010 .

[62]  L. Pauling,et al.  The Structure of the Micas and Related Minerals. , 1930, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Muhammad Mustafa Hussain,et al.  Review on Physically Flexible Nonvolatile Memory for Internet of Everything Electronics , 2015, ArXiv.

[64]  Stuart S. P. Parkin,et al.  Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy , 2013, Nature Physics.

[65]  P. Schilbe Raman scattering in VO2 , 2002 .

[66]  A. Ulman,et al.  Imaging structured water and bound polysaccharide on mica surface at ambient temperature. , 2003, Journal of the American Chemical Society.

[67]  R. Ramesh,et al.  Oxide interfaces: pathways to novel phenomena , 2012 .

[68]  D. Manning,et al.  Influence of time and temperature on reactions and transformations of muscovite mica , 1999 .

[69]  Nae-Eung Lee,et al.  $\hbox{PbZr}_{x}\hbox{Ti}_{1 - x}\hbox{O}_{3}$ Ferroelectric Thin-Film Capacitors for Flexible Nonvolatile Memory Applications , 2010, IEEE Electron Device Letters.

[70]  S. V. Narasimhan,et al.  Cation distribution and particle size effect on Raman spectrum of CoFe2O4 , 2011 .

[71]  A. Rousset,et al.  Relations between magneto-optical properties and reactivity in cobalt-manganese ferrite thin films and powders , 1996 .

[72]  Darrell G. Schlom,et al.  A Thin Film Approach to Engineering Functionality into Oxides , 2008 .

[73]  J. Arbiol,et al.  Incommensurate van der Waals epitaxy of nanowire arrays: a case study with ZnO on muscovite mica substrates. , 2012, Nano letters.

[74]  P. Kim,et al.  Heterostructures based on inorganic and organic van der Waals systems , 2014 .

[75]  S. Lau,et al.  Liquid-phase exfoliation of black phosphorus and its applications , 2017 .

[76]  D. Milliron,et al.  Achieving high mobility ZnO : Al at very high growth rates by dc filtered cathodic arc deposition , 2011 .

[77]  M. Wuttig,et al.  Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films , 2004 .

[78]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[79]  K. Yager,et al.  Epitaxial Growth of Molecular Crystals on van der Waals Substrates for High‐Performance Organic Electronics , 2014, Advanced materials.

[80]  Angus I. Kingon,et al.  Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications , 2005 .

[81]  J. Arbiol,et al.  Recent developments and future directions in the growth of nanostructures by van der Waals epitaxy. , 2013, Nanoscale.

[82]  Long-qing Chen,et al.  Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy. , 2017, ACS nano.

[83]  D. H. Wang,et al.  Study of uniaxial magnetism and enhanced magnetostriction in magnetic-annealed polycrystalline CoFe2O4 , 2011 .

[84]  I. Shvets,et al.  Magnetoresistance enhancement in epitaxial magnetite films grown on vicinal substrates , 2005 .

[85]  Jiangyu Li,et al.  Multiferroic CoFe2O4-Pb(Zr(0.52)Ti(0.48))O3 core-shell nanofibers and their magnetoelectric coupling. , 2011, Nanoscale.

[86]  Yaodong Liu,et al.  Al-doped ZnO films by pulsed laser deposition at room temperature , 2006 .

[87]  C. Guillén,et al.  Structural, optical and electrical characteristics of ITO thin films deposited by sputtering on different polyester substrates , 2008 .

[88]  Yuanhua Lin,et al.  Enhancement in magnetoelectric response in CoFe2O4–BaTiO3 heterostructure , 2008 .

[89]  Julio Gómez-Herrero,et al.  2D materials: to graphene and beyond. , 2011, Nanoscale.

[90]  J. C. Kieffer,et al.  Evidence for a structurally-driven insulator-to-metal transition in VO 2 : A view from the ultrafast timescale , 2004, cond-mat/0403214.

[91]  V. G. Ivanov,et al.  Short-range B -site ordering in the inverse spinel ferrite NiFe 2 O 4 , 2010, 1005.2244.

[92]  X. Tao,et al.  Fiber‐Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications , 2014, Advanced materials.

[93]  Yu Zhang,et al.  Epitaxial monolayer MoS2 on mica with novel photoluminescence. , 2013, Nano letters.

[94]  Muhammad M. Hussain,et al.  Study of harsh environment operation of flexible ferroelectric memory integrated with PZT and silicon fabric , 2015 .

[95]  G. Haacke New figure of merit for transparent conductors , 1976 .

[96]  A Gholinia,et al.  Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.

[97]  S. M. Lee,et al.  Enhanced Fracture Resistance of Flexible ZnO:Al Thin Films in Situ Sputtered on Bent Polymer Substrates. , 2015, ACS applied materials & interfaces.

[98]  M. Salmeron,et al.  Formation of dipole-oriented water films on mica substrates at ambient conditions , 2000 .

[99]  Young-Geun Park,et al.  A high-performance, flexible and robust metal nanotrough-embedded transparent conducting film for wearable touch screen panels. , 2016, Nanoscale.

[100]  Kenji Ebihara,et al.  Structure and properties of transparent conductive doped ZnO films by pulsed laser deposition , 2006 .

[101]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[102]  Yi Cui,et al.  Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes. , 2015, Nano letters.

[103]  P. Fenter,et al.  Molecular-scale density oscillations in water adjacent to a mica surface. , 2001, Physical review letters.

[104]  P. Chiu,et al.  Oxide Heteroepitaxy for Flexible Optoelectronics. , 2016, ACS applied materials & interfaces.

[105]  Sungkyun Park,et al.  Electric properties and surface characterization of transparent Al-doped ZnO thin films prepared by pulsed laser deposition , 2008 .

[106]  P. Chiu,et al.  Van der Waals epitaxy of functional MoO2 film on mica for flexible electronics , 2016 .

[107]  M. Hersam,et al.  Mixed-dimensional van der Waals heterostructures. , 2016, Nature materials.

[108]  S. Ying Structure and Dynamics of a Submonolayer Film Adsorbed on Solid Surfaces , 1971 .

[109]  Yi Cui,et al.  Energy and environmental nanotechnology in conductive paper and textiles , 2012 .

[110]  Jun Ma,et al.  Transparent conducting ZnO:Al films deposited on organic substrates deposited by r.f. magnetron-sputtering , 1998 .

[111]  Yi Cui,et al.  Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes. , 2011, Journal of the American Chemical Society.

[112]  Q. Pei,et al.  Recent Advances in Stretchable and Transparent Electronic Materials , 2016 .

[113]  Terry Alford,et al.  Effect of various annealing environments on electrical and optical properties of indium tin oxide on polyethylene napthalate , 2006 .

[114]  H. Ishiwara,et al.  The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene) , 2011 .

[115]  A. Carlo,et al.  Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties , 2011 .

[116]  S. Park,et al.  Deposition of indium–tin-oxide films on polymer substrates for application in plastic-based flat panel displays , 2001 .

[117]  Wei Lu,et al.  High-performance transparent conducting oxide nanowires. , 2006, Nano letters.

[118]  T. Trung,et al.  A flexible magnetoelectric field-effect transistor with magnetically responsive nanohybrid gate dielectric layer , 2015, Nano Research.

[119]  G. Steele,et al.  Mechanical properties of freely suspended atomically thin dielectric layers of mica , 2012, Nano Research.

[120]  Yaochun Shen,et al.  Icelike Water Monolayer Adsorbed on Mica at Room Temperature , 1998 .

[121]  Miyoung Kim,et al.  Magnetoelectric effects of nanoparticulate Pb(Zr0.52Ti0.48)O3–NiFe2O4 composite films , 2006 .

[122]  Y. Fainman,et al.  High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials. , 2016, Small.

[123]  C. T. Shelton,et al.  Epitaxial Pb(Zr,Ti)O3 Thin Films on Flexible Substrates , 2011 .

[124]  D. Viehland,et al.  Magnetoelectric effect in crystallographically textured BaTiO3 films deposited on ferromagnetic metallic glass foils , 2011 .

[125]  Li-Min Wang,et al.  Characteristics of indium–tin oxide thin films grown on flexible plastic substrates at room temperature , 2008 .

[126]  D. Viehland,et al.  Magnetoelectric quasi-(0-3) nanocomposite heterostructures , 2015, Nature Communications.

[127]  M. Iliev,et al.  The Poisson Ratio in CoFe2O4 Spinel Thin Films , 2012 .

[128]  J. Yi,et al.  Growth and characterization of indium tin oxide thin films deposited on PET substrates , 2008 .

[129]  W. Richter,et al.  Molecular Beam Epitaxy , 1989 .

[130]  R. Choudhary,et al.  Direct observation of oxygen induced room temperature ferromagnetism in MoO2 thin films by x-ray magnetic circular dichroism characterizations , 2009 .

[131]  S. Sinogeikin,et al.  Pressure-induced phase transitions and metallization in VO 2 , 2015 .

[132]  K. Ueno,et al.  Epitaxial growth of transition metal dichalcogenides on cleaved faces of mica , 1990 .

[133]  Andras Kis,et al.  Light Generation and Harvesting in a van der Waals Heterostructure , 2014, ACS nano.

[134]  Chun-Fu Chang,et al.  Heteroepitaxy of Fe3O4/Muscovite: A New Perspective for Flexible Spintronics. , 2016, ACS applied materials & interfaces.

[135]  Max C. Lemme,et al.  Direct graphene growth on insulator , 2011, 1106.2070.

[136]  A. Rosencwaig Double exchange and electron hopping in magnetite , 1969 .

[137]  Epitaxial Atomic Layer Deposition of Sn-Doped Indium Oxide , 2016 .

[138]  J. Arbiol,et al.  Twinning‐, Polytypism‐, and Polarity‐Induced Morphological Modulation in Nonplanar Nanostructures with van der Waals Epitaxy , 2013 .

[139]  B. Mitchell An introduction to materials engineering and science for chemical and materials engineers , 2003 .

[140]  Fengyuan Zhang,et al.  Magnetoelectric Coupling in Well-Ordered Epitaxial BiFeO3/CoFe2O4/SrRuO3 Heterostructured Nanodot Array. , 2016, ACS nano.

[141]  Stable Ferroelectric Poly(Vinylidene Fluoride-Trifluoroethylene) Film for Flexible Nonvolatile Memory Application , 2012, IEEE Electron Device Letters.

[142]  S. Chua,et al.  A mechanical assessment of flexible optoelectronic devices , 2001 .

[143]  Kazumasa Sunouchi,et al.  Fabrication and characterization of heterostructures with subnanometer thickness , 1984 .

[144]  D. Ginley,et al.  Handbook of transparent conductors , 2011 .

[145]  H. Morkoç,et al.  Processing, Structure, Properties, and Applications of PZT Thin Films , 2007 .

[146]  M. Ziese,et al.  Magnetoresistance of magnetite , 2000 .

[147]  J. Narayan,et al.  Epitaxial growth and properties of MoOx(2 , 2005 .

[148]  K. Tanigaki,et al.  In-plane topological p-n junction in the three-dimensional topological insulator Bi2−xSbxTe3−ySey , 2016, Nature Communications.

[149]  Ki-Bum Kim,et al.  Structural and Electrical Properties of Atomic Layer Deposited Al‐Doped ZnO Films , 2011 .

[150]  V. G. Golubev,et al.  Phase transition-governed opal–VO2 photonic crystal , 2001 .

[151]  R. O'handley Modern magnetic materials , 1999 .

[152]  M. Taniguchi,et al.  Atomically flat nickel film grown on synthetic mica , 2016 .

[153]  K. Schouteden,et al.  Lateral quantization of two-dimensional electron states by embedded Ag nanocrystals. , 2012, Physical review letters.

[154]  A. Koma Van der Waals epitaxy for highly lattice-mismatched systems , 1999 .

[155]  C. Guillén,et al.  Influence of the film thickness on the structure, optical and electrical properties of ITO coatings deposited by sputtering at room temperature on glass and plastic substrates , 2008 .

[156]  J. Israelachvili,et al.  Van der Waals Epitaxial Growth of α-Alumina Nanocrystals on Mica , 1993, Science.

[157]  Lang Chen,et al.  Transparent Indium Tin Oxide Electrodes on Muscovite Mica for High-Temperature-Processed Flexible Optoelectronic Devices. , 2016, ACS applied materials & interfaces.

[158]  C. Ederer,et al.  Epitaxial strain effects in the spinel ferrites CoFe 2 O 4 and NiFe 2 O 4 from first principles , 2010, 1006.5080.

[159]  Han‐Ki Kim,et al.  Flexible Al-doped ZnO films grown on PET substrates using linear facing target sputtering for flexible OLEDs , 2010 .

[160]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[161]  G. Fecher,et al.  Size-dependent structural and magnetic properties of chemically synthesized Co-Ni-Ga nanoparticles , 2017, Nano Research.

[162]  Dae-Eun Kim,et al.  Non-volatile organic memory with sub-millimetre bending radius , 2014, Nature Communications.

[163]  E. Flahaut,et al.  A comparative study on few-layer graphene production by exfoliation of different starting materials in a low boiling point solvent , 2017 .

[164]  W. Dang,et al.  Topological insulator nanostructures for near-infrared transparent flexible electrodes. , 2012, Nature chemistry.

[165]  Akira Yanase,et al.  Band Structure in the High Temperature Phase of Fe3O4 , 1984 .

[166]  C. K. Ong,et al.  Magnetoelectric effect in epitaxial Pb(Zr0.52Ti0.48)O3∕La0.7Sr0.3MnO3 composite thin film , 2007 .

[167]  H. Jeong,et al.  Flexible thermochromic window based on hybridized VO2/graphene. , 2013, ACS nano.

[168]  Wen-Feng Hsieh,et al.  Tuning the functionalities of a mesocrystal via structural coupling , 2015, Scientific Reports.

[169]  D. Viehland,et al.  Magnetoelectrics for magnetic sensor applications: status, challenges and perspectives , 2014 .

[170]  D. Su,et al.  Flexible Heteroepitaxy of CoFe2O4/Muscovite Bimorph with Large Magnetostriction. , 2017, ACS applied materials & interfaces.

[171]  H. M. Jang,et al.  Magnetoelectric coupling of [00l]-oriented Pb(Zr0.4Ti0.6)O3–Ni0.8Zn0.2Fe2O4 multilayered thin films , 2007 .

[172]  Vladislav V. Yakovlev,et al.  Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide , 2002 .

[173]  A. Salleo,et al.  Flexible Electronics: Materials and Applications , 2009 .

[174]  Z. Suo,et al.  Mechanics of rollable and foldable film-on-foil electronics , 1999 .

[175]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[176]  Y. Taniguchi,et al.  Preparation of flexible and heat-resisting conductive transparent film by the pyrosol process , 2006 .

[177]  Yaodong Liu,et al.  Optical and electrical properties of aluminum-doped ZnO thin films grown by pulsed laser deposition , 2007 .

[178]  Chong Guan Low,et al.  Ultra-thin and flat mica as gate dielectric layers. , 2012, Small.

[179]  Ramamoorthy Ramesh,et al.  Magnetotransport anisotropy effects in epitaxial magnetite (Fe 3 O 4 ) thin films , 1998 .

[180]  Kazuki Yoshimura,et al.  Ultrasharp interfaces grown with Van der Waals epitaxy , 1986 .

[181]  J. Duh,et al.  Al2O3-and ZrO2-modified dental glass ceramics , 1993, Journal of Materials Science.

[182]  Stuart S. P. Parkin,et al.  Jaewoo Jeong Induced Oxygen Vacancy Formation − by Electric Field 2 Suppression of Metal-Insulator Transition in VO , 2014 .

[183]  J. Slonczewski Origin of Magnetic Anisotropy in Cobalt-Substituted Magnetite , 1958 .

[184]  Madan Dubey,et al.  Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids , 2015 .

[185]  Khaled N. Salama,et al.  Thin PZT‐Based Ferroelectric Capacitors on Flexible Silicon for Nonvolatile Memory Applications , 2015 .

[186]  Neil H. Thomson,et al.  The nature of the air-cleaved mica surface , 2016 .

[187]  T. Bae,et al.  Fabrication of a completely transparent and highly flexible ITO nanoparticle electrode at room temperature. , 2013, ACS applied materials & interfaces.

[188]  W. Möller,et al.  Achieving high free electron mobility in ZnO:Al thin films grown by reactive pulsed magnetron sputtering , 2009 .

[189]  Q. Jia,et al.  Magnetoelectric properties of flexible BiFeO3/Ni tapes , 2012 .

[190]  K. Sunouchi,et al.  Summary Abstract: Fabrication of ultrathin heterostructures with van der Waals epitaxy , 1985 .

[191]  J. Kendall,et al.  Magnetic Susceptibility and Anisotropy of Mica , 1951 .

[192]  J. Horwitz,et al.  Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition , 2002 .

[193]  J. McTague,et al.  Orientational epitaxy—the orientational ordering of incommensurate structures , 1977 .