The Riesz energy of the Nth roots of unity: an asymptotic expansion for large N
暂无分享,去创建一个
[1] G. Pólya,et al. Über den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen. , 1931 .
[2] Henry Cohn,et al. Universally optimal distribution of points on spheres , 2006, math/0607446.
[3] G. Björck,et al. Distributions of positive mass, which maximize a certain generalized energy integral , 1956 .
[4] Yu. A. Brychkov,et al. Integrals and series , 1992 .
[5] Ernesto Oscar Reyes,et al. The Riemann zeta function , 2004 .
[6] ASYMPTOTIC RESULTS FOR THE MINIMUM ENERGY AND BEST PACKING PROBLEMS ON RECTIFIABLE SETS By , 2006 .
[7] Ralph Alexander,et al. Extremal problems of distance geometry related to energy integrals , 1974 .
[8] V. Maymeskul,et al. Asymptotics for Minimal Discrete Riesz Energy on Curves in ℝ d , 2004, Canadian Journal of Mathematics.
[9] Matt Davis,et al. Transfinite Diameter , 2004 .
[10] E. Hansen. A Table of Series and Products , 1977 .
[11] E. Saff,et al. Minimal Riesz Energy Point Configurations for Rectifiable d-Dimensional Manifolds , 2003, math-ph/0311024.
[12] T. Apostol. An Elementary View of Euler's Summation Formula , 1999 .
[13] N. S. Landkof. Foundations of Modern Potential Theory , 1972 .
[14] Mario Götz,et al. On the Riesz energy of measures , 2003, J. Approx. Theory.
[15] Mourad E. H. Ismail,et al. A -umbral calculus , 1981 .
[16] Eberhard Zeidler,et al. Teubner-Taschenbuch der Mathematik , 2003 .
[17] B. Farkas,et al. Transfinite Diameter, Chebyshev Constant and Energy on Locally Compact Spaces , 2007, 0704.0859.
[18] E. Saff,et al. Discretizing Manifolds via Minimum Energy Points , 2004 .