The Riesz energy of the Nth roots of unity: an asymptotic expansion for large N

We derive the complete asymptotic expansion in terms of powers of $N$ for the Riesz $s$-energy of $N$ equally spaced points on the unit circle as $N\to \infty$. For $s\ge -2$, such points form optimal energy $N$-point configurations with respect to the Riesz potential $1/r^{s}$, $s\neq0$, where $r$ is the Euclidean distance between points. By analytic continuation we deduce the expansion for all complex values of $s$. The Riemann zeta function plays an essential role in this asymptotic expansion.

[1]  G. Pólya,et al.  Über den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen. , 1931 .

[2]  Henry Cohn,et al.  Universally optimal distribution of points on spheres , 2006, math/0607446.

[3]  G. Björck,et al.  Distributions of positive mass, which maximize a certain generalized energy integral , 1956 .

[4]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[5]  Ernesto Oscar Reyes,et al.  The Riemann zeta function , 2004 .

[6]  ASYMPTOTIC RESULTS FOR THE MINIMUM ENERGY AND BEST PACKING PROBLEMS ON RECTIFIABLE SETS By , 2006 .

[7]  Ralph Alexander,et al.  Extremal problems of distance geometry related to energy integrals , 1974 .

[8]  V. Maymeskul,et al.  Asymptotics for Minimal Discrete Riesz Energy on Curves in ℝ d , 2004, Canadian Journal of Mathematics.

[9]  Matt Davis,et al.  Transfinite Diameter , 2004 .

[10]  E. Hansen A Table of Series and Products , 1977 .

[11]  E. Saff,et al.  Minimal Riesz Energy Point Configurations for Rectifiable d-Dimensional Manifolds , 2003, math-ph/0311024.

[12]  T. Apostol An Elementary View of Euler's Summation Formula , 1999 .

[13]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[14]  Mario Götz,et al.  On the Riesz energy of measures , 2003, J. Approx. Theory.

[15]  Mourad E. H. Ismail,et al.  A -umbral calculus , 1981 .

[16]  Eberhard Zeidler,et al.  Teubner-Taschenbuch der Mathematik , 2003 .

[17]  B. Farkas,et al.  Transfinite Diameter, Chebyshev Constant and Energy on Locally Compact Spaces , 2007, 0704.0859.

[18]  E. Saff,et al.  Discretizing Manifolds via Minimum Energy Points , 2004 .