Using Ontology-Based Data Access to Enable Context Recognition in the Presence of Incomplete Information

Ontologies play an important role as a semantic layer for data access in various areas such as the Semantic Web, medicine, and enterprise applications. They capture the terminology of an application domain and describe domain knowledge in a machine-processable way. Formal ontology languages additionally provide semantics to these specifications. In contrast to standard database systems, systems for ontology-based data access (OBDA) may thus infer additional information, only implicit in the given data, to answer queries. Moreover, they usually employ the open-world assumption, which means that knowledge that is not stated explicitly in the data and cannot be inferred is neither assumed to be true nor false. This faithfully models the real world and differs from database query answering, where knowledge not present in the data is assumed to be false. All these features make ontologies valuable tools for systems that integrate heterogeneous data sources and need to automatically interpret the data, to support data analysis or to fully-automatedly recognize complex contexts. This has been generally recognized and several standardized ontologies have recently been published [12,14]. However, often, the processed data is

[1]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[2]  Carsten Lutz,et al.  Temporalising Tractable Description Logics , 2007, 14th International Symposium on Temporal Representation and Reasoning (TIME'07).

[3]  Enrico Franconi,et al.  A Temporal Description Logic for Reasoning about Actions and Plans , 1998, J. Artif. Intell. Res..

[4]  Carsten Lutz,et al.  Temporal Description Logics: A Survey , 2008, 2008 15th International Symposium on Temporal Representation and Reasoning.

[5]  Franz Baader,et al.  How Pervasive Is the Myerson-Satterthwaite Impossibility? , 2009, IJCAI.

[6]  Ashok K. Chandra,et al.  Optimal implementation of conjunctive queries in relational data bases , 1977, STOC '77.

[7]  Riccardo Rosati,et al.  On the first-order rewritability of conjunctive queries over binary guarded existential rules , 2015, CILC.

[8]  Johann A. Makowsky,et al.  Embedded implicational dependencies and their inference problem , 1981, STOC '81.

[9]  Bernardo Cuenca Grau,et al.  OWL 2 Web Ontology Language: Profiles , 2009 .

[10]  Alasdair J. G. Gray,et al.  Enabling Ontology-Based Access to Streaming Data Sources , 2010, SEMWEB.

[11]  Alexandra Poulovassilis,et al.  Query Rewriting under Linear EL Knowledge Bases , 2016, RR.

[12]  Carsten Lutz,et al.  Conjunctive Query Answering in the Description Logic EL Using a Relational Database System , 2009, IJCAI.

[13]  Emanuele Della Valle,et al.  Taming velocity and variety simultaneously in big data with stream reasoning: tutorial , 2016, DEBS.

[14]  Stefan Borgwardt,et al.  Temporalizing rewritable query languages over knowledge bases , 2015, J. Web Semant..

[15]  Magdalena Ortiz,et al.  Regular Path Queries in Lightweight Description Logics: Complexity and Algorithms , 2015, J. Artif. Intell. Res..

[16]  Gunter Saake,et al.  Using Finite-Linear Temporal Logic for Specifying Database Dynamics , 1988, CSL.

[17]  Stijn Heymans,et al.  Tractable Reasoning with DL-Programs over Datalog-rewritable Description Logics , 2010, ECAI.

[18]  Thomas Andreas Meyer,et al.  Prediction and Explanation over DL-Lite Data Streams , 2013, LPAR.

[19]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[20]  Veronika Thost News on Temporal Conjunctive Queries , 2017, WSP/WOMoCoE@ISWC.

[21]  Lijun Zhang,et al.  LTL Satisfiability Checking Revisited , 2013, 2013 20th International Symposium on Temporal Representation and Reasoning.

[22]  Riccardo Rosati,et al.  Improving Query Answering over DL-Lite Ontologies , 2010, KR.

[23]  Boris Motik,et al.  Representing and querying validity time in RDF and OWL: A logic-based approach , 2010, J. Web Semant..

[24]  Sebastian Rudolph,et al.  Query Answering in the Horn Fragments of the Description Logics SHOIQ and SROIQ , 2011, IJCAI.

[25]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[26]  Jean Christoph Jung,et al.  Lightweight Temporal Description Logics with Rigid Roles and Restricted TBoxes , 2015, IJCAI.

[27]  Carsten Lutz,et al.  The Combined Approach to Ontology-Based Data Access , 2011, IJCAI.

[28]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching Time Temporal Logic , 2008, 25 Years of Model Checking.

[29]  Markus Krötzsch Efficient Rule-Based Inferencing for OWL EL , 2011, IJCAI.

[30]  Diego Calvanese,et al.  Description Logic Knowledge and Action Bases , 2014, J. Artif. Intell. Res..

[31]  Diego Calvanese,et al.  Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family , 2007, Journal of Automated Reasoning.

[32]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[33]  Yuri Gurevich,et al.  The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.

[34]  Amit P. Sheth,et al.  The SSN ontology of the W3C semantic sensor network incubator group , 2012, J. Web Semant..

[35]  Óscar Corcho,et al.  Towards a Unified Language for RDF Stream Query Processing , 2015, ESWC.

[36]  Thomas Eiter,et al.  Query Rewriting for Horn-SHIQ Plus Rules , 2012, AAAI.

[37]  Franz Baader,et al.  Metric Temporal Description Logics with Interval-Rigid Names , 2017, Description Logics.

[38]  Claudio Gutiérrez,et al.  Introducing Time into RDF , 2007, IEEE Transactions on Knowledge and Data Engineering.

[39]  Franz Baader,et al.  Temporal Conjunctive Queries in Expressive Description Logics with Transitive Roles , 2015, Australasian Conference on Artificial Intelligence.

[40]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[41]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[42]  Szymon Klarman Practical Querying of Temporal Data via OWL 2 QL and SQL: 2011 , 2013, LPAR.

[43]  Veronika Thost,et al.  On Implementing Temporal Query Answering in DL-Lite (extended abstract) , 2015, Description Logics.

[44]  Catriel Beeri,et al.  A Proof Procedure for Data Dependencies , 1984, JACM.

[45]  Enrico Franconi,et al.  A survey of temporal extensions of description logics , 2001, Annals of Mathematics and Artificial Intelligence.

[46]  Jean Christoph Jung,et al.  Temporalized EL Ontologies for Accessing Temporal Data: Complexity of Atomic Queries , 2016, IJCAI.

[47]  Andreas Pieris,et al.  The Impact of Disjunction on Query Answering Under Guarded-Based Existential Rules , 2013, Description Logics.

[48]  Stefan Borgwardt,et al.  Temporal Query Answering in DL-Lite , 2013, Description Logics.

[49]  Anni-Yasmin Turhan,et al.  Situation recognition for service management systems using OWL 2 reasoners , 2013, 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops).

[50]  Carsten Lutz Interval-based Temporal Reasoning with General TBoxes , 2001, IJCAI.

[51]  David Toman,et al.  Logical data expiration , 2002, Proceedings Ninth International Symposium on Temporal Representation and Reasoning.

[52]  M R Quillian,et al.  Word concepts: a theory and simulation of some basic semantic capabilities. , 1967, Behavioral science.

[53]  Jean Christoph Jung,et al.  Lightweight Description Logics and Branching Time: A Troublesome Marriage , 2014, KR.

[54]  Diego Calvanese,et al.  DL-Lite: Tractable Description Logics for Ontologies , 2005, AAAI.

[55]  Thomas Wilke,et al.  Classifying Discrete Temporal Properties , 1999, STACS.

[56]  Carsten Lutz,et al.  Quantitative temporal logics over the reals: PSpace and below , 2007, Inf. Comput..

[57]  Boris Motik,et al.  Reasoning in Description Logics by a Reduction to Disjunctive Datalog , 2007, Journal of Automated Reasoning.

[58]  Ian Horrocks,et al.  Conjunctive Query Answering for the Description Logic SHIQ , 2007, IJCAI.

[59]  Egor V. Kostylev,et al.  Queries with negation and inequalities over lightweight ontologies , 2015, J. Web Semant..

[60]  Marco Manna,et al.  Guarded-Based Disjunctive Tuple-Generating Dependencies , 2016, ACM Trans. Database Syst..

[61]  Diego Calvanese,et al.  Ontop: Answering SPARQL queries over relational databases , 2016, Semantic Web.

[62]  Christoph Bussler,et al.  The Role of Semantic Web Technology in Enterprise Application Integration , 2003, IEEE Data Eng. Bull..

[63]  Mehmet A. Orgun,et al.  ON TEMPORAL DEDUCTIVE DATABASES , 1996, Comput. Intell..

[64]  Gunter Saake,et al.  Theoretical foundations of handling large substitution sets in temporal integrity monitoring , 2005, Acta Informatica.

[65]  Diego Calvanese,et al.  The DL-Lite Family and Relations , 2009, J. Artif. Intell. Res..

[66]  Emanuele Della Valle,et al.  A Query Model to Capture Event Pattern Matching in RDF Stream Processing Query Languages , 2016, EKAW.

[67]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[68]  Stefan Borgwardt,et al.  Temporal Query Answering in DL-Lite with Negation , 2015, GCAI.

[69]  Ian Horrocks,et al.  The Even More Irresistible SROIQ , 2006, KR.

[70]  Thomas Eiter,et al.  LARS: A Logic-Based Framework for Analyzing Reasoning over Streams , 2015, AAAI.

[71]  Carsten Lutz,et al.  The Combined Approach to Query Answering in DL-Lite , 2010, KR.

[72]  Jan Chomicki,et al.  Querying ATSQL databases with temporal logic , 1996, TODS.

[73]  Diego Calvanese,et al.  EQL-Lite: Effective First-Order Query Processing in Description Logics , 2007, IJCAI.

[74]  Sebastian Rudolph,et al.  Walking the Complexity Lines for Generalized Guarded Existential Rules , 2011, IJCAI.

[75]  Jean-François Baget,et al.  On rules with existential variables: Walking the decidability line , 2011, Artif. Intell..

[76]  Yevgeny Kazakov,et al.  Consequence-Driven Reasoning for Horn SHIQ Ontologies , 2009, IJCAI.

[77]  Kent A. Spackman,et al.  SNOMED RT: a reference terminology for health care , 1997, AMIA.

[78]  Carsten Lutz,et al.  First Order-Rewritability and Containment of Conjunctive Queries in Horn Description Logics , 2016, Description Logics.

[79]  Markus Krötzsch,et al.  Practical Reasoning with Nominals in the EL Family of Description Logics , 2012, KR.

[80]  Franz Baader,et al.  LTL over description logic axioms , 2008, TOCL.

[81]  Frank Wolter,et al.  First-Order Rewritability of Temporal Ontology-Mediated Queries , 2015, IJCAI.

[82]  Thomas Andreas Meyer,et al.  Querying Temporal Databases via OWL 2 QL , 2014, RR.

[83]  Alessandro Artale,et al.  Tractable Interval Temporal Propositional and Description Logics , 2015, AAAI.

[84]  Maurizio Lenzerini,et al.  Data integration: a theoretical perspective , 2002, PODS.

[85]  Óscar Corcho,et al.  Query Rewriting in RDF Stream Processing , 2016, ESWC.

[86]  Franz Baader,et al.  Temporalizing Ontology-Based Data Access , 2013, CADE.

[87]  Alessandro Artale,et al.  A Cookbook for Temporal Conceptual Data Modelling with Description Logics , 2012, TOCL.

[88]  Franz Baader,et al.  A Scheme for Integrating Concrete Domains into Concept Languages , 1991, IJCAI.

[89]  Sebastian Brandt,et al.  Polynomial Time Reasoning in a Description Logic with Existential Restrictions, GCI Axioms, and - What Else? , 2004, ECAI.

[90]  Enrico Franconi,et al.  Temporal Description Logics , 2005, Handbook of Temporal Reasoning in Artificial Intelligence.

[91]  Laurian M. Chirica,et al.  The entity-relationship model: toward a unified view of data , 1975, SIGF.

[92]  Sebastian Rudolph,et al.  Nominals, Inverses, Counting, and Conjunctive Queries or: Why Infinity is your Friend! , 2010, J. Artif. Intell. Res..

[93]  Antonio M. Campos,et al.  Ontology-Based Knowledge Management In The Steel Industry , 2007, The Semantic Web: Real-World Applications from Industry.

[94]  Stefan Borgwardt,et al.  Temporal Query Answering in the Description Logic DL-Lite , 2013, FroCos.

[95]  Sebastian Rudolph,et al.  Stream reasoning and complex event processing in ETALIS , 2012, Semantic Web.

[96]  Catriel Beeri,et al.  The Implication Problem for Data Dependencies , 1981, ICALP.

[97]  Adrian Paschke,et al.  Rule-Based Event Processing and Reaction Rules , 2009, RuleML.

[98]  Klaus Schild,et al.  Combining Terminological Logics with Tense Logic , 1993, EPIA.

[99]  Luca Pulina,et al.  Temporal and Spatial OBDA with Many-Dimensional Halpern-Shoham Logic , 2016, IJCAI.

[100]  Carsten Lutz,et al.  Data Complexity in the EL Family of Description Logics , 2007, LPAR.

[101]  Krishna G. Kulkarni,et al.  Temporal features in SQL:2011 , 2012, SGMD.

[102]  Boris Motik,et al.  Tractable query answering and rewriting under description logic constraints , 2010, J. Appl. Log..

[103]  Thomas Andreas Meyer,et al.  Complexity of Temporal Query Abduction in DL-Lite , 2014, Description Logics.

[104]  Andrea Calì,et al.  A general datalog-based framework for tractable query answering over ontologies , 2009, SEBD.

[105]  Geguang Pu,et al.  SAT-Based Explicit LTL Reasoning , 2015, Haifa Verification Conference.

[106]  Aldo Gangemi,et al.  The GALEN CORE Model Schemata for Anatomy: Towards a Re-usable Application-Independent Model of Medical Concepts , 2008 .

[107]  Diego Calvanese,et al.  DL-Lite: Practical Reasoning for Rich Dls , 2004, Description Logics.

[108]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[109]  Carsten Lutz,et al.  Efficient Query Rewriting in the Description Logic EL and Beyond , 2015, IJCAI.

[110]  Franz Baader,et al.  Temporal query entailment in the Description Logic SHQ , 2015, J. Web Semant..

[111]  Raj Madhavan,et al.  IEEE Standard Ontologies for Robotics and Automation , 2015 .

[112]  Marcel Lippmann,et al.  Temporalised description logics for monitoring partially observable events , 2014, Joint Workshop of the German Research Training Groups in Computer Science.

[113]  Alin Deutsch,et al.  The chase revisited , 2008, PODS.

[114]  Ralf Küsters,et al.  Computing Least Common Subsumers in Description Logics with Existential Restrictions , 1999, IJCAI.

[115]  Diego Calvanese,et al.  Data Complexity of Query Answering in Description Logics , 2006, Description Logics.

[116]  Ian Horrocks,et al.  Towards Analytics Aware Ontology Based Access to Static and Streaming Data , 2016, SEMWEB.

[117]  Franz Baader,et al.  Pushing the EL Envelope , 2005, IJCAI.

[118]  Szymon Klarman,et al.  Towards a Unifying Approach to Representing and Querying Temporal Data in Description Logics , 2012, RR.

[119]  Huajun Chen,et al.  The Semantic Web , 2011, Lecture Notes in Computer Science.

[120]  Yoav Shoham,et al.  A propositional modal logic of time intervals , 1991, JACM.

[121]  Stefan Borgwardt,et al.  Temporal Query Answering in the Description Logic EL , 2015, IJCAI.

[122]  Andrea Calì,et al.  Towards more expressive ontology languages: The query answering problem , 2012, Artif. Intell..

[123]  Gert Smolka,et al.  Attributive Concept Descriptions with Complements , 1991, Artif. Intell..

[124]  Giorgio Orsi,et al.  Ontological queries: Rewriting and optimization , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[125]  Davide Bresolin,et al.  DL-Lite and Interval Temporal Logics: a Marriage Proposal , 2014, ECAI.