Optimization of a cw mode-locked frequency-doubled Nd:LiYF(4) laser.

Several drawbacks of a cw-pumped mode-locked Nd:LiYF(4) laser are outlined, and it is shown how to overcome them. For the first time, attention is paid to thermally induced astigmatism and its compensation in a Nd:LiYF(4) rod. An optimized system generates an average output power similar to that of a typical Nd:YAG laser, however, with an increased stability and with pulse durations that are significantly shorter. The higher peak power in Nd:LiYF(4) can result in a higher conversion efficiency in a frequency-doubling process, provided the doubling crystal can handle the high average power. It will be demonstrated that a well-engineered Nd:LiYF(4) system may become the preferred choice for many applications, including seeding regenerative amplifiers and pumping synchronously mode-locked dye laser oscillators and amplifiers.

[1]  V Magni Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability: errata. , 1986, Applied optics.

[2]  Paolo Laporta,et al.  Misalignment sensitivity of solid-state laser resonators with thermal lensing , 1986 .

[3]  A. Siegman,et al.  FM and AM mode locking of the homogeneous laser - Part I: Theory , 1970 .

[4]  P. Laporta,et al.  Pump power stability range of single-mode solid-state lasers with rod thermal lensing , 1987 .

[5]  Martin G. Cohen,et al.  New Developments In CW Mode-Locked Nd:YAG Lasers , 1986, Photonics West - Lasers and Applications in Science and Engineering.

[6]  V. Magni,et al.  Multielement stable resonators containing a variable lens , 1987 .

[7]  Anthony M. Johnson,et al.  Tunable femtosecond dye laser synchronously pumped by the compressed second harmonic of Nd:YAG , 1985 .

[8]  John R. Murray,et al.  Pulsed gain and thermal lensing of Nd:LiYF 4 , 1983 .

[9]  D. Linde,et al.  Highly stable acousto-optic mode-locking using active feedback , 1981 .

[10]  M. D. Thomas,et al.  High Gain Nd:YLF Amplifier , 1986, Photonics West - Lasers and Applications in Science and Engineering.

[11]  P. Bado,et al.  Nd:YLF mode-locked oscillator and regenerative amplifier. , 1987, Optics letters.

[12]  V. Semchishen,et al.  Ac-Stark broadening of three-photon resonances in four-photon ionization of iodine atoms with broadband laser radiation , 1987 .

[13]  H. Vanherzeele,et al.  Thermal lensing measurement and compensation in a continuous-wave mode-locked Nd:YLF laser. , 1988, Optics letters.

[14]  D. Cotter,et al.  Technique for Highly Stable Active Mode-Locking , 1984, Topical Meeting on Ultrafast Phenomena.

[15]  Evan P. Chicklis,et al.  CW laser operation of Nd:YLF , 1982 .

[16]  J. C. McCarthy,et al.  Laser Performance Of Nd:YLF , 1983, Other Conferences.

[17]  P. Laporta,et al.  The role of the rod position in single-mode solid state laser resonators: Optimization of a cw mode-locked Nd:YAG laser , 1986 .

[18]  H. Weber,et al.  Four-wave mixing in semiconductor laser media (A) , 1987 .

[19]  P. Laporta,et al.  Novel stability diagrams for continuous-wave solid-state laser resonators. , 1986, Optics letters.

[20]  Michael F. Becker,et al.  Harmonic mode locking of the Nd:YAG laser , 1972 .

[21]  T. E. Gier,et al.  KxRb1−xTiOPO4: A new nonlinear optical material , 1976 .

[22]  E. W. Stryland The effect of pulse to pulse variation on ultrashort pulsewidth measurements , 1979 .

[23]  D. L. Goff,et al.  Etude d'un oscillateur a blocage de modes utilisant un cristal de LiYF4 dope au neodyme , 1978 .

[24]  A. L. Harmer,et al.  Fluorescence of Nd3+ in lithium yttrium fluoride , 1969 .

[25]  L. Esterowitz,et al.  Comparison of Nd 1.06 and 1.33 µm operation in various hosts , 1987 .

[26]  D M Bloom,et al.  Reduction of timing fluctuations in a mode-locked Nd:YAG laser by electronic feedback. , 1986, Optics letters.

[27]  H. Vanherzeele,et al.  Index of refraction measurements and parametric generation in hydrothermally grown KTiOPO(4). , 1988, Applied optics.

[28]  E. Sharp,et al.  High‐efficiency Nd3+ : LiYF4 laser , 1973 .