New optimal quantum convolutional codes

One of the most challenges to prove the feasibility of quantum computers is to protect the quantum nature of information. Quantum convolutional codes are aimed at protecting a stream of quantum information in a long distance communication, which are the correct generalization to the quantum domain of their classical analogs. In this paper, we construct some classes of quantum convolutional codes by employing classical constacyclic codes. These codes are optimal in the sense that they attain the Singleton bound for pure convolutional stabilizer codes.

[1]  Martin Rötteler,et al.  Non-catastrophic Encoders and Encoder Inverses for Quantum Convolutional Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[2]  Mark M. Wilde,et al.  Entanglement-Assisted Quantum Convolutional Coding , 2007, ArXiv.

[3]  R. Brualdi,et al.  Handbook Of Coding Theory , 2011 .

[4]  Dwijendra K. Ray-Chaudhuri,et al.  The Structure of 1-Generator Quasi-Twisted Codes and New Linear Codes , 2001, Des. Codes Cryptogr..

[5]  Shixin Zhu,et al.  New Quantum MDS Codes From Negacyclic Codes , 2013, IEEE Transactions on Information Theory.

[6]  Giuliano G. La Guardia,et al.  On Negacyclic MDS-Convolutional Codes , 2013, ArXiv.

[7]  Dilip V. Sarwate,et al.  Pseudocyclic maximum- distance-separable codes , 1990, IEEE Trans. Inf. Theory.

[8]  Jean-Pierre Tillich,et al.  Description of a quantum convolutional code. , 2003, Physical review letters.

[9]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[11]  Markus Grassl,et al.  Convolutional and Tail-Biting Quantum Error-Correcting Codes , 2005, IEEE Transactions on Information Theory.

[12]  Shixin Zhu,et al.  Constacyclic Codes and Some New Quantum MDS Codes , 2014, IEEE Transactions on Information Theory.

[13]  T. Beth,et al.  On optimal quantum codes , 2003, quant-ph/0312164.

[14]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[15]  Jing Li,et al.  Efficient Quantum Stabilizer Codes: LDPC and LDPC-Convolutional Constructions , 2010, IEEE Transactions on Information Theory.

[16]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[17]  H. F. Chau Good quantum-convolutional error-correction codes and their decoding algorithm exist , 1999 .

[18]  Mark M. Wilde,et al.  Minimal-Memory, Noncatastrophic, Polynomial-Depth Quantum Convolutional Encoders , 2011, IEEE Transactions on Information Theory.

[19]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[20]  Gérard D. Cohen,et al.  On binary constructions of quantum codes , 1999, IEEE Trans. Inf. Theory.

[21]  Wang Jun,et al.  A new approach to constructing CSS codes based on factor graphs , 2008, Inf. Sci..

[22]  Martin Rötteler,et al.  Quantum block and convolutional codes from self-orthogonal product codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[23]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[24]  Giuliano G. La Guardia,et al.  On Classical and Quantum MDS-Convolutional BCH Codes , 2012, IEEE Transactions on Information Theory.