Combination of the CHARMM27 force field with united‐atom lipid force fields

Computer simulations offer a valuable way to study membrane systems, from simple lipid bilayers to large transmembrane protein complexes and lipid‐nucleic acid complexes for drug delivery. Their accuracy depends on the quality of the force field parameters used to describe the components of a particular system. We have implemented the widely used CHARMM22 and CHARMM27 force fields in the GROMACS simulation package to (i) combine the CHARMM22 protein force field with two sets of united‐atom lipids parameters; (ii) allow comparisons of the lipid CHARMM27 force field with other lipid force fields or lipid‐protein force field combinations. Our tests do not show any particular issue with the combination of the all‐atom CHARMM22 force field with united‐atoms lipid parameters, although pertinent experimental data are lacking to assess the quality of the lipid‐protein interactions. The conversion utilities allow automatic generation of GROMACS simulation files with CHARMM nucleic acids and protein parameters and topologies, starting from pdb files using the standard GROMACS pdb2gmx method. CMAP is currently not implemented. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010

[1]  Alexander D. MacKerell,et al.  Improved treatment of the protein backbone in empirical force fields. , 2004, Journal of the American Chemical Society.

[2]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[3]  J. Killian,et al.  On the orientation of a designed transmembrane peptide: toward the right tilt angle? , 2007, Journal of the American Chemical Society.

[4]  Christian Kandt,et al.  Membrane protein simulations with a united-atom lipid and all-atom protein model: lipid–protein interactions, side chain transfer free energies and model proteins , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  Alexander D. MacKerell,et al.  An Improved Empirical Potential Energy Function for Molecular Simulations of Phospholipids , 2000 .

[6]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[7]  Alexander D. MacKerell,et al.  An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. , 2005, The journal of physical chemistry. B.

[8]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[9]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[10]  Ole G Mouritsen,et al.  Simulations of a membrane-anchored peptide: structure, dynamics, and influence on bilayer properties. , 2004, Biophysical journal.

[11]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[12]  P M Cullis,et al.  Affinities of amino acid side chains for solvent water. , 1981, Biochemistry.

[13]  R. Wolfenden,et al.  Influences of solvent water on protein folding: free energies of solvation of cis and trans peptides are nearly identical. , 1988, Biochemistry.

[14]  G. Feigenson,et al.  Order parameters and areas in fluid-phase oriented lipid membranes using wide angle X-ray scattering. , 2008, Biophysical journal.

[15]  Benoît Roux,et al.  Atomic Level Anisotropy in the Electrostatic Modeling of Lone Pairs for a Polarizable Force Field Based on the Classical Drude Oscillator. , 2006, Journal of chemical theory and computation.

[16]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[17]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[18]  O. Berger,et al.  Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. , 1997, Biophysical journal.

[19]  Siewert J Marrink,et al.  Lipids on the move: simulations of membrane pores, domains, stalks and curves. , 2009, Biochimica et biophysica acta.

[20]  Alexander D. MacKerell,et al.  Force field influence on the observation of π-helical protein structures in molecular dynamics simulations , 2003 .

[21]  S. May,et al.  Modelling of proteins in membranes. , 2006, Chemistry and physics of lipids.

[22]  A. Anosov,et al.  Thermal acoustic radiation from multilamellar vesicles in lipid phase transition. , 2008, Chemistry and physics of lipids.

[23]  Siewert J. Marrink,et al.  Methodological issues in lipid bilayer simulations , 2003 .

[24]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[25]  R. Larson,et al.  Molecular dynamics simulations of model trans-membrane peptides in lipid bilayers: a systematic investigation of hydrophobic mismatch. , 2006, Biophysical journal.

[26]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[27]  Benoît Roux,et al.  Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm , 2003 .

[28]  E. Lindahl,et al.  Membrane proteins: molecular dynamics simulations. , 2008, Current opinion in structural biology.

[29]  E. Lindahl,et al.  Implementation of the CHARMM Force Field in GROMACS: Analysis of Protein Stability Effects from Correction Maps, Virtual Interaction Sites, and Water Models. , 2010, Journal of chemical theory and computation.

[30]  D. Tieleman,et al.  Interpretation of 2H-NMR experiments on the orientation of the transmembrane helix WALP23 by computer simulations. , 2010, Biophysical journal.

[31]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[32]  Justin L. MacCallum,et al.  Calculation of the water–cyclohexane transfer free energies of neutral amino acid side‐chain analogs using the OPLS all‐atom force field , 2003, J. Comput. Chem..

[33]  N. Kučerka,et al.  Influence of cholesterol on the bilayer properties of monounsaturated phosphatidylcholine unilamellar vesicles , 2007, The European physical journal. E, Soft matter.

[34]  Michael R. Shirts,et al.  Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins , 2003 .

[35]  Richard W. Pastor,et al.  Constant surface tension simulations of lipid bilayers: The sensitivity of surface areas and compressibilities , 1999 .

[36]  M. Jensen,et al.  Reparameterization of all-atom dipalmitoylphosphatidylcholine lipid parameters enables simulation of fluid bilayers at zero tension. , 2007, Biophysical journal.

[37]  J. Nagle,et al.  Partial molecular volumes of lipids and cholesterol. , 2006, Chemistry and physics of lipids.

[38]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[39]  S. Nosé,et al.  Constant pressure molecular dynamics for molecular systems , 1983 .

[40]  C. Wade,et al.  Lipid lateral diffusion by pulsed nuclear magnetic resonance. , 1979, Biochemistry.

[41]  Alan E. Mark,et al.  The GROMOS96 Manual and User Guide , 1996 .

[42]  B D Sykes,et al.  Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing cis-monounsaturated acyl chain homologues of oleic acid: differential scanning calorimetric and 31P NMR spectroscopic studies. , 1988, Biochemistry.

[43]  M. Klein,et al.  United-atom acyl chains for CHARMM phospholipids. , 2008, The journal of physical chemistry. B.

[44]  A. Mark,et al.  Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations , 1994 .

[45]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[46]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[47]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[48]  Werner Treptow,et al.  Environment of the gating charges in the Kv1.2 Shaker potassium channel. , 2006, Biophysical journal.

[49]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[50]  John F. Nagle,et al.  Structure of Fully Hydrated Fluid Phase Lipid Bilayers with Monounsaturated Chains , 2006, The Journal of Membrane Biology.

[51]  Olle Edholm,et al.  Dynamics in atomistic simulations of phospholipid membranes: Nuclear magnetic resonance relaxation rates and lateral diffusion. , 2006, The Journal of chemical physics.

[52]  N. Yamada,et al.  Bending modulus of lipid bilayers in a liquid-crystalline phase including an anomalous swelling regime estimated by neutron spin echo experiments , 2008, The European physical journal. E, Soft matter.

[53]  Alexander D. MacKerell,et al.  CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model , 2004, J. Comput. Chem..