Extending Howe's Method to Early Bisimulations for Typed Mobile Embedded Resources with Local Names

We extend Howe's method to prove that input-early strong and -delay contextual bisimulations are congruences for the Higher-order mobile embedded resources (Homer) calculus, a typed higher order process calculus with active mobile processes, nested locations and local names which conservatively extends the syntax and semantics of higher-order calculi such as Plain CHOCS and HOpi. We prove that the input-early strong and -delay contextual bisimulation congruences are sound co-inductive characterisations of barbed bisimulation congruence and in fact complete in the strong case. The extension of Howe's method provides considerably simpler congruence proofs than established previously for similar calculi for mobile processes in nested locations.

[1]  Vladimiro Sassone,et al.  A Calculus of Mobile Resources , 2002, CONCUR.

[2]  Davide Sangiorgi,et al.  Expressing mobility in process algebras : first-order and higher-order paradigms , 1993 .

[3]  Andrew D. Gordon Operational equivalences for untyped and polymorphic object calculi , 1999 .

[4]  Douglas J. Howe Equality in lazy computation systems , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[5]  Alan Jeffrey,et al.  Semantics for core Concurrent ML using computation types , 1999 .

[6]  Julian Rathke,et al.  Contextual equivalence for higher-order pi-calculus revisited , 2005, Log. Methods Comput. Sci..

[7]  Thomas T. Hildebrandt,et al.  Bigraphical Semantics of Higher-Order Mobile Embedded Resources with Local Names , 2006, GT-VC@CONCUR.

[8]  Prateek Mishra,et al.  Operational and Algebraic Semantics for Facile: A Symmetric Integration of Concurrent and Functional Programming , 1990, ICALP.

[9]  Bent Thomsen,et al.  Plain CHOCS A second generation calculus for higher order processes , 2005, Acta Informatica.

[10]  Thomas T. Hildebrandt,et al.  Bisimulation Congruences for Homer a calculus of Higher-order mobile embedded resources , 2004 .

[11]  Julian Rathke,et al.  Towards a theory of bisimulation for local names , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[12]  Robin Milner,et al.  Theories for the Global Ubiquitous Computer , 2004, FoSSaCS.

[13]  Francesco Zappa Nardelli,et al.  Behavioural Theory for Mobile Ambients , 2004, IFIP TCS.

[14]  Julian Rathke,et al.  Contextual Equivalence for Higher-Order π-Calculus Revisited , 2003, MFPS.

[15]  Michele Bugliesi,et al.  Communication and mobility control in boxed ambients , 2005, Inf. Comput..

[16]  Davide Sangiorgi,et al.  The Pi-Calculus - a theory of mobile processes , 2001 .

[17]  Kousha Etessami,et al.  A Hierarchy of Polynomial-Time Computable Simulations for Automata , 2002, CONCUR.

[18]  Andrew Donald Gordon,et al.  Functional programming and input/output , 1995 .

[19]  Davide Sangiorgi,et al.  Bisimulation for Higher-Order Process Calculi , 1994, Inf. Comput..

[20]  Jan Vitek,et al.  The Seal Calculus , 2005, Inf. Comput..

[21]  Douglas J. Howe Proving Congruence of Bisimulation in Functional Programming Languages , 1996, Inf. Comput..

[22]  Gérard Boudol Towards a Lambda-Calculus for Concurrent and Communicating Systems , 1989, TAPSOFT, Vol.1.

[23]  Alan Schmitt,et al.  The m-calculus: a higher-order distributed process calculus , 2003, POPL '03.

[24]  Luca Cardelli,et al.  Mobile Ambients , 1998, FoSSaCS.

[25]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[26]  Francesco Zappa Nardelli,et al.  Behavioural Theory for Mobile Ambients , 2004, IFIP TCS.

[27]  Jan Vitek,et al.  Seal: A Framework for Secure Mobile Computations , 1998, ICCL Workshop: Internet Programming Languages.

[28]  Giuseppe Castagna,et al.  The Seal Calculus Revisited: Contextual Equivalence and Bisimilarity , 2002, FSTTCS.

[29]  Andrew M. Pitts,et al.  Higher order operational techniques in semantics , 1999 .

[30]  Andrew D. Gordon Bisimilarity as a theory of functional programming , 1995, MFPS.

[31]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[32]  Thomas T. Hildebrandt,et al.  A CPS encoding of name-passing in Higher-order mobile embedded resources , 2006, Theor. Comput. Sci..

[33]  Matthew Hennessy,et al.  Bisimulation congruences in safe ambients , 2002, POPL '02.

[34]  Alan Schmitt,et al.  The Kell Calculus: A Family of Higher-Order Distributed Process Calculi , 2004, Global Computing.