Towards a General Error Theory of the Trapezoidal Rule

The trapezoidal rule is the method of choice for numerical quadrature of analytic functions over the real line ℝ. Other intervals and slowly decaying integrands may elegantly be handled by means of simple analytic transformations of the integration variable. In the case of an integrand analytic in an open strip containing ℝ the discretization error is exponentially small in the reciprocal step size. If the integrand has singularities arbitrarily close to ℝ, the discretization error is larger and its theory is more complicated. We present examples illustrating possible error laws of the trapezoidal rule.

[1]  H. Schwarz Numerical Analysis , 1989 .

[2]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[3]  Masatake Mori,et al.  Quadrature formulas obtained by variable transformation , 1973 .

[4]  Philip J. Davis,et al.  Chapter 6 – Automatic Integration , 1984 .

[5]  Stan Wagon,et al.  The SIAM 100-Digit Challenge - A study in High-Accuracy Numerical Computing , 2004, The SIAM 100-Digit Challenge.

[6]  F. Stenger Numerical Methods Based on Sinc and Analytic Functions , 1993 .

[7]  Walter Gautschi,et al.  Computing the Hilbert Transform of the Generalized Laguerre and Hermite Weight Functions , 2001 .

[8]  Masao Iri,et al.  On a certain quadrature formula , 1987 .

[9]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[10]  C. Schwartz,et al.  Numerical integration of analytic functions , 1969 .

[11]  Frank Stenger,et al.  Integration Formulae Based on the Trapezoidal Formula , 1973 .

[12]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[13]  Jackson B. Lackey,et al.  Errata: Handbook of mathematical functions with formulas, graphs, and mathematical tables (Superintendent of Documents, U. S. Government Printing Office, Washington, D. C., 1964) by Milton Abramowitz and Irene A. Stegun , 1977 .

[14]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[15]  E. T. Goodwin The evaluation of integrals of the form , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[17]  M. Reed,et al.  Fourier Analysis, Self-Adjointness , 1975 .