Sparsity adaptive reconstruction for highly accelerated cardiac MRI

To enable parameter‐free, accelerated cardiovascular magnetic resonance (CMR).

[1]  José M. Bioucas-Dias,et al.  Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[2]  Sathish Ramani,et al.  Monte Carlo SURE‐based parameter selection for parallel magnetic resonance imaging reconstruction , 2014, Magnetic resonance in medicine.

[3]  Daniel K Sodickson,et al.  Low‐rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components , 2015, Magnetic resonance in medicine.

[4]  Ning Jin,et al.  Fast implementation for compressive recovery of highly accelerated cardiac cine MRI using the balanced sparse model , 2017, Magnetic resonance in medicine.

[5]  Jean-Philippe Thiran,et al.  Sparsity Averaging for Compressive Imaging , 2012, IEEE Signal Processing Letters.

[6]  Richard B. Thompson,et al.  Reduced native right ventricular T1 in Anderson-Fabry disease as compared to patients with pulmonary hypertension , 2014, Journal of Cardiovascular Magnetic Resonance.

[7]  Y. Mitsuhata Adjustment of regularization in ill‐posed linear inverse problems by the empirical Bayes approach , 2004 .

[8]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[9]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[10]  Peter Boesiger,et al.  Compressed sensing in dynamic MRI , 2008, Magnetic resonance in medicine.

[11]  Sungheon Kim,et al.  Golden‐angle radial sparse parallel MRI: Combination of compressed sensing, parallel imaging, and golden‐angle radial sampling for fast and flexible dynamic volumetric MRI , 2014, Magnetic resonance in medicine.

[12]  Michael Elad,et al.  ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA , 2014, Magnetic resonance in medicine.

[13]  W. Segars,et al.  MRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance , 2014, Journal of Cardiovascular Magnetic Resonance.

[14]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[15]  Runze Li,et al.  Regularization Parameter Selections via Generalized Information Criterion , 2010, Journal of the American Statistical Association.

[16]  Terry M Peters,et al.  Stationary wavelet transform for under-sampled MRI reconstruction. , 2014, Magnetic resonance imaging.

[17]  Wenlong Song,et al.  Compressed Sensing MRI Using Sparsity Averaging and FISTA , 2017 .

[18]  Yoram Bresler,et al.  MR Image Reconstruction From Highly Undersampled k-Space Data by Dictionary Learning , 2011, IEEE Transactions on Medical Imaging.

[19]  Leon Axel,et al.  XD‐GRASP: Golden‐angle radial MRI with reconstruction of extra motion‐state dimensions using compressed sensing , 2016, Magnetic resonance in medicine.

[20]  Oren N Jaspan,et al.  Compressed sensing MRI: a review of the clinical literature. , 2015, The British journal of radiology.

[21]  Kurt Keutzer,et al.  Practical parallel imaging compressed sensing MRI: Summary of two years of experience in accelerating body MRI of pediatric patients , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[22]  Yonina C. Eldar,et al.  Smoothing and Decomposition for Analysis Sparse Recovery , 2013, IEEE Transactions on Signal Processing.

[23]  X. Qu,et al.  Combined sparsifying transforms for compressed sensing MRI , 2010 .

[24]  Leon Axel,et al.  Combination of Compressed Sensing and Parallel Imaging for Highly-Accelerated 3 D First-Pass Cardiac Perfusion MRI , 2009 .

[25]  Leslie Ying,et al.  Compressed Sensing Dynamic Cardiac Cine MRI Using Learned Spatiotemporal Dictionary , 2014, IEEE Transactions on Biomedical Engineering.

[26]  Li Feng,et al.  Accelerated phase‐contrast cine MRI using k‐t SPARSE‐SENSE , 2012, Magnetic resonance in medicine.

[27]  Philip Schniter,et al.  Iteratively Reweighted ℓ1 Approaches to Sparse Composite Regularization , 2015, IEEE Trans. Computational Imaging.

[28]  T. Pock,et al.  Second order total generalized variation (TGV) for MRI , 2011, Magnetic resonance in medicine.

[29]  Yu Ding,et al.  Variable density incoherent spatiotemporal acquisition (VISTA) for highly accelerated cardiac MRI , 2015, Magnetic resonance in medicine.

[30]  G. Adluru,et al.  Myocardial perfusion MRI with an undersampled 3D stack-of-stars sequence. , 2012, Medical physics.

[31]  Mário A. T. Figueiredo,et al.  Signal restoration with overcomplete wavelet transforms: comparison of analysis and synthesis priors , 2009, Optical Engineering + Applications.

[32]  L. Ying,et al.  Accelerating SENSE using compressed sensing , 2009, Magnetic resonance in medicine.

[33]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[34]  Jong Chul Ye,et al.  k‐t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI , 2009, Magnetic resonance in medicine.

[35]  Manuel Desco,et al.  Comparison of Total Variation with a Motion Estimation Based Compressed Sensing Approach for Self-Gated Cardiac Cine MRI in Small Animal Studies , 2014, PloS one.

[36]  M. Lustig,et al.  Compressed Sensing MRI , 2008, IEEE Signal Processing Magazine.

[37]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[38]  V. Morozov On the solution of functional equations by the method of regularization , 1966 .

[39]  Guochang Xu,et al.  Regularization and Adjustment , 2013 .

[40]  M. Lustig,et al.  Venous and arterial flow quantification are equally accurate and precise with parallel imaging compressed sensing 4D phase contrast MRI , 2013, Journal of magnetic resonance imaging : JMRI.