Basis Function Models for Animal Movement

Advances in satellite-based data collection techniques have served as a catalyst for new statistical methodology to analyze these data. In wildlife ecological studies, satellite-based data and methodology have provided a wealth of information about animal space use and the investigation of individual-based animal-environment relationships. With the technology for data collection improving dramatically over time, we are left with massive archives of historical animal telemetry data of varying quality. While many contemporary statistical approaches for inferring movement behavior are specified in discrete time, we develop a flexible continuous-time stochastic integral equation framework that is amenable to reduced-rank second-order covariance parameterizations. We demonstrate how the associated first-order basis functions can be constructed to mimic behavioral characteristics in realistic trajectory processes using telemetry data from mule deer and mountain lion individuals in western North America. Our approach is parallelizable and provides inference for heterogeneous trajectories using nonstationary spatial modeling techniques that are feasible for large telemetry data sets.

[1]  Paul D. Sampson,et al.  Constructions for Nonstationary Spatial Processes , 2010 .

[2]  J. Ramsay Monotone Regression Splines in Action , 1988 .

[3]  Mevin B Hooten,et al.  Models for Bounded Systems with Continuous Dynamics , 2009, Biometrics.

[4]  P. Diggle,et al.  Bayesian Inference in Gaussian Model-based Geostatistics , 2002 .

[5]  Noel A Cressie,et al.  Statistics for Spatio-Temporal Data , 2011 .

[6]  John G. Kie,et al.  Habitat selection and survival of mule deer : Tradeoffs associated with migration , 1997 .

[7]  A. O'Hagan,et al.  Bayesian inference for non‐stationary spatial covariance structure via spatial deformations , 2003 .

[8]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[9]  Edward Alphonso Goldman,et al.  The Puma, Mysterious American Cat , 1947 .

[10]  C. Ansley,et al.  The Signal Extraction Approach to Nonlinear Regression and Spline Smoothing , 1983 .

[11]  Mevin B. Hooten,et al.  Agent-Based Inference for Animal Movement and Selection , 2010 .

[12]  J. Andrew Royle,et al.  Multiresolution models for nonstationary spatial covariance functions , 2002 .

[13]  L. Mark Berliner,et al.  Hierarchical Bayesian Time Series Models , 1996 .

[14]  Leslie R. McFarlane,et al.  Breeding Behavior and Space Use of Male and Female Mule Deer: An Examination of Potential Risk Differences for Chronic Wasting Disease Infection , 2007 .

[15]  John W. Kern,et al.  DAILY AND SEASONAL MOVEMENTS AND HABITAT USE BY FEMALE ROCKY MOUNTAIN ELK AND MULE DEER , 2003 .

[16]  James E. Dunn,et al.  Analysis of Radio Telemetry Data in Studies of Home Range , 1977 .

[17]  Ronald P. Barry,et al.  Blackbox Kriging: Spatial Prediction Without Specifying Variogram Models , 1996 .

[18]  Brett T. McClintock,et al.  A general discrete‐time modeling framework for animal movement using multistate random walks , 2012 .

[19]  Juan M. Morales,et al.  EXTRACTING MORE OUT OF RELOCATION DATA: BUILDING MOVEMENT MODELS AS MIXTURES OF RANDOM WALKS , 2004 .

[20]  Ian D. Jonsen,et al.  ROBUST STATE-SPACE MODELING OF ANIMAL MOVEMENT DATA , 2005 .

[21]  N Thompson Hobbs,et al.  Linking chronic wasting disease to mule deer movement scales: a hierarchical Bayesian approach. , 2006, Ecological applications : a publication of the Ecological Society of America.

[22]  Jacob S. Ivan,et al.  A functional model for characterizing long‐distance movement behaviour , 2016 .

[23]  Brett T. McClintock,et al.  Modelling animal movement using the Argos satellite telemetry location error ellipse , 2015 .

[24]  Mevin B. Hooten,et al.  Homogenization of Large-Scale Movement Models in Ecology with Application to the Spread of Chronic Wasting Disease in Mule Deer , 2012 .

[25]  Mark S. Boyce,et al.  Cougar kill rate and prey composition in a multiprey system. , 2010 .

[26]  Christopher K. Wikle,et al.  Low-Rank Representations for Spatial Processes , 2010 .

[27]  Peter Leimgruber,et al.  Non‐Markovian maximum likelihood estimation of autocorrelated movement processes , 2014 .

[28]  N Thompson Hobbs,et al.  Dynamics of prion disease transmission in mule deer. , 2006, Ecological applications : a publication of the Ecological Society of America.

[29]  Herbert K. H. Lee,et al.  Efficient models for correlated data via convolutions of intrinsic processes , 2005 .

[30]  Mevin B Hooten,et al.  Animal movement constraints improve resource selection inference in the presence of telemetry error. , 2015, Ecology.

[31]  L. Shepp Radon-Nikodym Derivatives of Gaussian Measures , 1966 .

[32]  Carlo Ratti,et al.  Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome , 2011, IEEE Transactions on Intelligent Transportation Systems.

[33]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[34]  Mevin B. Hooten,et al.  A guide to Bayesian model selection for ecologists , 2015 .

[35]  P. Guttorp,et al.  Nonparametric Estimation of Nonstationary Spatial Covariance Structure , 1992 .

[36]  Catherine A. Calder,et al.  Dynamic factor process convolution models for multivariate space–time data with application to air quality assessment , 2007, Environmental and Ecological Statistics.

[37]  Mevin B. Hooten,et al.  Continuous-time discrete-space models for animal movement , 2012, 1211.1992.

[38]  Devin S Johnson,et al.  Continuous-time correlated random walk model for animal telemetry data. , 2008, Ecology.

[39]  Paul J Rathouz,et al.  Accounting for animal movement in estimation of resource selection functions: sampling and data analysis. , 2009, Ecology.

[40]  A. Gelfand,et al.  Gaussian predictive process models for large spatial data sets , 2008, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[41]  D. Brillinger Modeling Spatial Trajectories , 2010 .

[42]  Mark Berman,et al.  Approximating Point Process Likelihoods with Glim , 1992 .

[43]  Andrew S. Knell,et al.  Classifying area-restricted search (ARS) using a partial sum approach , 2011, Theoretical Ecology.

[44]  Johannes Ledolter,et al.  State-Space Analysis of Wildlife Telemetry Data , 1991 .

[45]  J. Fieberg,et al.  Comparative interpretation of count, presence–absence and point methods for species distribution models , 2012 .

[46]  William A. Link,et al.  Bayesian Multimodel Inference by RJMCMC: A Gibbs Sampling Approach , 2013 .

[47]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[48]  M. Hooten,et al.  Velocity-Based Movement Modeling for Individual and Population Level Inference , 2011, PloS one.

[49]  Christopher J Paciorek,et al.  Spatial modelling using a new class of nonstationary covariance functions , 2006, Environmetrics.

[50]  David Higdon,et al.  A process-convolution approach to modelling temperatures in the North Atlantic Ocean , 1998, Environmental and Ecological Statistics.

[51]  C H Fleming,et al.  Estimating where and how animals travel: an optimal framework for path reconstruction from autocorrelated tracking data. , 2015, Ecology.

[52]  Brett T McClintock,et al.  When to be discrete: the importance of time formulation in understanding animal movement , 2014, Movement Ecology.

[53]  R. Terry Bowyer,et al.  Migratory patterns of mountain lions : Implications for social regulation and conservation , 1999 .

[54]  R. Kays,et al.  Terrestrial animal tracking as an eye on life and planet , 2015, Science.

[55]  J. Laundré,et al.  The feasibility of the north-eastern USA supporting the return of the cougar Puma concolor , 2013, Oryx.

[56]  Erin E. Peterson,et al.  A Moving Average Approach for Spatial Statistical Models of Stream Networks , 2010 .

[57]  Mevin B Hooten,et al.  Estimating animal resource selection from telemetry data using point process models. , 2013, The Journal of animal ecology.

[58]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[59]  Jun Zhu,et al.  A set of nonlinear regression models for animal movement in response to a single landscape feature , 2005 .

[60]  Andrew O. Finley,et al.  spBayes for Large Univariate and Multivariate Point-Referenced Spatio-Temporal Data Models , 2013, 1310.8192.

[61]  D. Higdon Space and Space-Time Modeling using Process Convolutions , 2002 .

[62]  P. Guttorp,et al.  Bayesian estimation of semi‐parametric non‐stationary spatial covariance structures , 2001 .

[63]  D. Warton,et al.  Correction note: Poisson point process models solve the “pseudo-absence problem” for presence-only data in ecology , 2010, 1011.3319.

[64]  Devin S Johnson,et al.  A General Framework for the Analysis of Animal Resource Selection from Telemetry Data , 2008, Biometrics.