7‐T MR—from research to clinical applications?

Over 20 000 MR systems are currently installed worldwide and, although the majority operate at magnetic fields of 1.5 T and below (i.e. about 70%), experience with 3‐T (in high‐field clinical diagnostic imaging and research) and 7‐T (research only) human MR scanners points to a future in functional and metabolic MR diagnostics. Complementary to previous studies, this review attempts to provide an overview of ultrahigh‐field MR research with special emphasis on emerging clinical applications at 7 T. We provide a short summary of the technical development and the current status of installed MR systems. The advantages and challenges of ultrahigh‐field MRI and MRS are discussed with special emphasis on radiofrequency inhomogeneity, relaxation times, signal‐to‐noise improvements, susceptibility effects, chemical shifts, specific absorption rate and other safety issues. In terms of applications, we focus on the topics most likely to gain significantly from 7‐T MR, i.e. brain imaging and spectroscopy and musculoskeletal imaging, but also body imaging, which is particularly challenging. Examples are given to demonstrate the advantages of susceptibility‐weighted imaging, time‐of‐flight MR angiography, high‐resolution functional MRI, 1H and 31P MRSI in the human brain, sodium and functional imaging of cartilage and the first results (and artefacts) using an eight‐channel body array, suggesting future areas of research that should be intensified in order to fully explore the potential of 7‐T MR systems for use in clinical diagnosis. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  W. Bogner,et al.  High‐resolution mapping of human brain metabolites by free induction decay 1H MRSI at 7 T , 2012, NMR in biomedicine.

[2]  Cecilia Possanzini,et al.  31P MRSI and 1H MRS at 7 T: initial results in human breast cancer , 2011, NMR in biomedicine.

[3]  Hans Hoogduin,et al.  High‐field MRS of the human brain at short TE and TR , 2011, NMR in biomedicine.

[4]  W. Bogner,et al.  In vivo 31P spectroscopy by fully adiabatic extended image selected in vivo spectroscopy: A comparison between 3 T and 7 T , 2011, Magnetic resonance in medicine.

[5]  Siegfried Trattnig,et al.  Clinical fMRI: Evidence for a 7 T benefit over 3 T , 2011, NeuroImage.

[6]  Oliver Kraff,et al.  Dynamic Contrast-Enhanced Renal MRI at 7 Tesla: Preliminary Results , 2011, Investigative radiology.

[7]  Peter R Luijten,et al.  Feasibility of 7 Tesla Breast Magnetic Resonance Imaging Determination of Intrinsic Sensitivity and High-Resolution Magnetic Resonance Imaging, Diffusion-Weighted Imaging, and 1H-Magnetic Resonance Spectroscopy of Breast Cancer Patients Receiving Neoadjuvant Therapy , 2011, Investigative radiology.

[8]  Saikat Sengupta,et al.  Dynamic B0 shimming at 7 T. , 2011, Magnetic resonance imaging.

[9]  A. Wright,et al.  Helmholtz-pair transmit coil with integrated receive array for high-resolution MRI of trabecular bone in the distal tibia at 7T. , 2011, Journal of magnetic resonance.

[10]  S. Francis,et al.  Applications of multi-nuclear magnetic resonance spectroscopy at 7T. , 2011, World journal of radiology.

[11]  Bing Wu,et al.  Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition , 2011, NeuroImage.

[12]  T. Scheenen,et al.  Detection of fully refocused polyamine spins in prostate cancer at 7 T , 2011, NMR in biomedicine.

[13]  Oliver Kraff,et al.  7 tesla MRI of microbleeds and white matter lesions as seen in vascular dementia , 2011, Journal of magnetic resonance imaging : JMRI.

[14]  Ewald Moser,et al.  Semi-LASER localized dynamic 31P magnetic resonance spectroscopy in exercising muscle at ultra-high magnetic field , 2011, Magnetic resonance in medicine.

[15]  Ferdinand Schweser,et al.  Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo brain iron metabolism? , 2011, NeuroImage.

[16]  Jörn Diedrichsen,et al.  Evidence for a motor and a non-motor domain in the human dentate nucleus — An fMRI study , 2011, NeuroImage.

[17]  A. Webb,et al.  A radiofrequency coil configuration for imaging the human vertebral column at 7 T. , 2011, Journal of magnetic resonance.

[18]  Siegfried Trattnig,et al.  The veins of the nucleus dentatus: Anatomical and radiological findings , 2011, NeuroImage.

[19]  J. Lagendijk,et al.  Uniform prostate imaging and spectroscopy at 7 T: comparison between a microstrip array and an endorectal coil , 2010, NMR in biomedicine.

[20]  D. Timmann,et al.  Structural and Functional Magnetic Resonance Imaging of the Human Cerebellar Nuclei , 2010, The Cerebellum.

[21]  Oliver Kraff,et al.  Renal imaging at 7 Tesla: preliminary results , 2011, European Radiology.

[22]  Maria Ljungberg,et al.  Degraded water suppression in small volume 1H MRS due to localised shimming , 2010, Magnetic Resonance Materials in Physics, Biology and Medicine.

[23]  Steen Moeller,et al.  Performance of external and internal coil configurations for prostate investigations at 7 T , 2010, Magnetic resonance in medicine.

[24]  K. Jokela,et al.  ICNIRP Guidelines GUIDELINES FOR LIMITING EXPOSURE TO TIME-VARYING , 1998 .

[25]  Thoralf Niendorf,et al.  Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla , 2010, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[26]  H P Hetherington,et al.  J‐refocused coherence transfer spectroscopic imaging at 7 T in human brain , 2010, Magnetic resonance in medicine.

[27]  Andrew G Webb,et al.  Quantitative assessment of left ventricular function in humans at 7 T , 2010, Magnetic resonance in medicine.

[28]  J. Reichenbach,et al.  Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. , 2010, Medical physics.

[29]  Oliver Bieri,et al.  23Na MR imaging at 7 T after knee matrix-associated autologous chondrocyte transplantation preliminary results. , 2010, Radiology.

[30]  Matthias Stuber,et al.  Right coronary MR angiography at 7 T: a direct quantitative and qualitative comparison with 3 T in young healthy volunteers. , 2010, Radiology.

[31]  Nikos Evangelou,et al.  3 Tesla and 7 Tesla MRI of multiple sclerosis cortical lesions , 2010, Journal of magnetic resonance imaging : JMRI.

[32]  Z. Cho,et al.  Altered T2* relaxation time of the hippocampus in major depressive disorder: implications of ultra-high field magnetic resonance imaging. , 2010, Journal of psychiatric research.

[33]  M. Ladd,et al.  Susceptibility weighted magnetic resonance imaging of cerebral cavernous malformations: prospects, drawbacks, and first experience at ultra-high field strength (7-Tesla) magnetic resonance imaging. , 2010, Neurosurgical focus.

[34]  Y. Cheng,et al.  Susceptibility mapping as a means to visualize veins and quantify oxygen saturation , 2010, Journal of magnetic resonance imaging : JMRI.

[35]  M. Ladd,et al.  Dynamic contrast-enhanced breast MRI at 7 Tesla utilizing a single-loop coil: a feasibility trial. , 2010, Academic radiology.

[36]  Mark E Ladd,et al.  RF excitation using time interleaved acquisition of modes (TIAMO) to address B1 inhomogeneity in high‐field MRI , 2010, Magnetic resonance in medicine.

[37]  Thoralf Niendorf,et al.  Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises , 2010, European Radiology.

[38]  Thoralf Niendorf,et al.  Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla—a pilot study , 2010, European Radiology.

[39]  Robert Turner,et al.  Diffusion imaging in humans at 7T using readout‐segmented EPI and GRAPPA , 2010, Magnetic resonance in medicine.

[40]  Peter R Luijten,et al.  High‐resolution magnetization‐prepared 3D‐FLAIR imaging at 7.0 Tesla , 2010, Magnetic resonance in medicine.

[41]  S Maderwald,et al.  Imaging of brain metastases of bronchial carcinomas with 7 T MRI - initial results. , 2010, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[42]  Siegfried Trattnig,et al.  Windows on the Human Body – in Vivo High-Field Magnetic Resonance Research and Applications in Medicine and Psychology , 2010, Sensors.

[43]  Pratik Mukherjee,et al.  High‐Resolution Phased‐Array MRI of the Human Brain at 7 Tesla: Initial Experience in Multiple Sclerosis Patients , 2010, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[44]  M. Ladd,et al.  Imaging of patients with hippocampal sclerosis at 7 Tesla: initial results. , 2010, Academic radiology.

[45]  A. Wilman,et al.  Field strength dependence of PRESS timings for simultaneous detection of glutamate and glutamine from 1.5 to 7T. , 2010, Journal of magnetic resonance.

[46]  A. Doerfler,et al.  In vivo quantification of intracerebral GABA by single-voxel (1)H-MRS-How reproducible are the results? , 2010, European journal of radiology.

[47]  Bing Wu,et al.  7T Human Spine Imaging Arrays With Adjustable Inductive Decoupling , 2010, IEEE Transactions on Biomedical Engineering.

[48]  Dae-Shik Kim,et al.  Quantitative analysis of the hippocampus using images obtained from 7.0 T MRI , 2010, NeuroImage.

[49]  Ewald Moser,et al.  Ultra-high-field magnetic resonance: Why and when? , 2010, World journal of radiology.

[50]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[51]  Jullie W Pan,et al.  RF shimming for spectroscopic localization in the human brain at 7 T , 2010, Magnetic resonance in medicine.

[52]  Peter Bauer,et al.  Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6 , 2010, NeuroImage.

[53]  Oliver Kraff,et al.  Cerebral cavernous hemangiomas at 7 Tesla: initial experience. , 2010, Academic radiology.

[54]  C. Windischberger,et al.  [Functional magnetic resonance imaging with ultra-high fields]. , 2010, Der Radiologe.

[55]  G. Laub,et al.  The origins of bright blood MPRAGE at 7 Tesla and a simultaneous method for T1 imaging and non-contrast MRA , 2010 .

[56]  R. Guillevin,et al.  In Vivo Structural and Functional Imaging of the Human Rubral and Inferior Olivary Nuclei: A Mini-review , 2010, The Cerebellum.

[57]  C. Habas Functional Imaging of the Deep Cerebellar Nuclei: A Review , 2010, The Cerebellum.

[58]  Oliver Kraff,et al.  Imaging of adult astrocytic brain tumours with 7 T MRI: preliminary results , 2010, European Radiology.

[59]  C. Windischberger,et al.  Funktionelle Magnetresonanztomographie bei ultrahohen Feldern , 2010, Der Radiologe.

[60]  M. Stuber,et al.  Initial results on in vivo human coronary MR angiography at 7 T , 2009, Magnetic resonance in medicine.

[61]  M. Ladd,et al.  An Eight-Channel Phased Array RF Coil for Spine MR Imaging at 7 T , 2009, Investigative radiology.

[62]  Jaco J. M. Zwanenburg,et al.  Fluid attenuated inversion recovery (FLAIR) MRI at 7.0 Tesla: comparison with 1.5 and 3.0 Tesla , 2009, European Radiology.

[63]  Peter G. Morris,et al.  fMRI at 1.5, 3 and 7 T: Characterising BOLD signal changes , 2009, NeuroImage.

[64]  K. Uğurbil,et al.  In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: Metabolite quantification at 4T vs. 7T , 2009, Magnetic resonance in medicine.

[65]  Caterina Mainero,et al.  In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI , 2009, Neurology.

[66]  T. Darwish,et al.  Nephrogenic systemic fibrosis: what internists need to know. , 2009, Missouri medicine.

[67]  Sharmila Majumdar,et al.  Imaging of the Musculoskeletal System In Vivo Using Ultra-high Field Magnetic Resonance at 7 T , 2009, Investigative radiology.

[68]  S Trattnig,et al.  Assessment of 31P relaxation times in the human calf muscle: A comparison between 3 T and 7 T in vivo , 2009, Magnetic resonance in medicine.

[69]  Bejoy Thomas,et al.  Principles, techniques, and applications of T2*-based MR imaging and its special applications. , 2009, Radiographics : a review publication of the Radiological Society of North America, Inc.

[70]  Peter Boesiger,et al.  Feasibility of Cardiac Gating Free of Interference With Electro-Magnetic Fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla Using an MR-Stethoscope , 2009, Investigative radiology.

[71]  Nikos Evangelou,et al.  A Comparison of 3T and 7T in the Detection of Small Parenchymal Veins Within MS Lesions , 2009, Investigative radiology.

[72]  Peter Boesiger,et al.  Slice‐selective FID acquisition, localized by outer volume suppression (FIDLOVS) for 1H‐MRSI of the human brain at 7 T with minimal signal loss , 2009, NMR in biomedicine.

[73]  F. Leijten,et al.  3T versus 1.5T phased‐array MRI in the presurgical work‐up of patients with partial epilepsy of uncertain focus , 2009, Journal of magnetic resonance imaging : JMRI.

[74]  J. Lagendijk,et al.  SAR and power implications of different RF shimming strategies in the pelvis for 7T MRI , 2009, Journal of magnetic resonance imaging : JMRI.

[75]  Jullie W Pan,et al.  Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays , 2009, Magnetic resonance in medicine.

[76]  Christian Beaulieu,et al.  Sodium imaging intensity increases with time after human ischemic stroke , 2009, Annals of neurology.

[77]  P. Strick,et al.  Cerebellum and nonmotor function. , 2009, Annual review of neuroscience.

[78]  Jaco J. M. Zwanenburg,et al.  Perforating arteries originating from the posterior communicating artery: a 7.0-Tesla MRI study , 2009, European Radiology.

[79]  A. Heerschap,et al.  Proton spectroscopic imaging of the human prostate at 7 T , 2009, NMR in biomedicine.

[80]  Steen Moeller,et al.  T 1 weighted brain images at 7 Tesla unbiased for Proton Density, T 2 ⁎ contrast and RF coil receive B 1 sensitivity with simultaneous vessel visualization , 2009, NeuroImage.

[81]  Rolf Gruetter,et al.  On the origin of the MR image phase contrast: An in vivo MR microscopy study of the rat brain at 14.1 T , 2009, NeuroImage.

[82]  Rolf Gruetter,et al.  MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T , 2009, Magnetic resonance in medicine.

[83]  H. Hetherington Novel approaches to imaging epilepsy by MRI. , 2009, Future neurology.

[84]  Sharmila Majumdar,et al.  GRAPPA-based susceptibility-weighted imaging of normal volunteers and patients with brain tumor at 7 T. , 2009, Magnetic resonance imaging.

[85]  Benedikt A. Poser,et al.  Investigating the benefits of multi-echo EPI for fMRI at 7 T , 2009, NeuroImage.

[86]  M. Schlamann,et al.  First Clinical Study on Ultra-High-Field MR Imaging in Patients with Multiple Sclerosis: Comparison of 1.5T and 7T , 2009, American Journal of Neuroradiology.

[87]  Thomas M. Link,et al.  Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint , 2009, Skeletal Radiology.

[88]  G J Metzger,et al.  Initial results of cardiac imaging at 7 tesla , 2009, Magnetic resonance in medicine.

[89]  Ravinder R Regatte,et al.  In vivo 7.0-tesla magnetic resonance imaging of the wrist and hand: technical aspects and applications. , 2009, Seminars in musculoskeletal radiology.

[90]  S. Maderwald,et al.  Pre-interventional assessment of a vertebrobasilar aneurysm with 7 tesla time-of-flight MR angiography. , 2009, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[91]  Klaas P. Pruessmann,et al.  Travelling-wave nuclear magnetic resonance , 2009, Nature.

[92]  Jeff H. Duyn,et al.  Susceptibility contrast in high field MRI of human brain as a function of tissue iron content , 2009, NeuroImage.

[93]  S Maderwald,et al.  The human hippocampus at 7 T—In vivo MRI , 2009, Hippocampus.

[94]  Peter Andersen,et al.  Whole‐body imaging at 7T: Preliminary results , 2009, Magnetic resonance in medicine.

[95]  Zang-Hee Cho,et al.  Imaging and analysis of lenticulostriate arteries using 7.0‐Tesla magnetic resonance angiography , 2009, Magnetic resonance in medicine.

[96]  H H Quick,et al.  Evaluation of Intracranial Aneurysms with 7 T versus 1.5 T Time-of-Flight MR Angiography – Initial Experience , 2009, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[97]  G. Chang,et al.  Olympic fencers: adaptations in cortical and trabecular bone determined by quantitative computed tomography , 2009, Osteoporosis International.

[98]  Wietske van der Zwaag,et al.  In vivo measurement of glycine with short echo-time 1H MRS in human brain at 7 T , 2009, Magnetic Resonance Materials in Physics, Biology and Medicine.

[99]  Jeroen Hendrikse,et al.  MR angiography of the cerebral perforating arteries with magnetization prepared anatomical reference at 7T: Comparison with time‐of‐flight , 2008, Journal of magnetic resonance imaging : JMRI.

[100]  S. Nelson,et al.  Quantitative in vivo magnetic resonance imaging of multiple sclerosis at 7 Tesla with sensitivity to iron , 2008, Annals of neurology.

[101]  J. Hermsdörfer,et al.  Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy , 2008, Clinical Neurophysiology.

[102]  Blake D. Niederhauser,et al.  High‐resolution 7T MRI of the human hippocampus in vivo , 2008, Journal of magnetic resonance imaging : JMRI.

[103]  D. Leibfritz,et al.  Fast three‐dimensional 1H MR spectroscopic imaging at 7 Tesla using “spectroscopic missing pulse – SSFP” , 2008, Magnetic resonance in medicine.

[104]  Jan Sedlacik,et al.  Susceptibility weighted imaging at ultra high magnetic field strengths: Theoretical considerations and experimental results , 2008, Magnetic resonance in medicine.

[105]  Pratik Mukherjee,et al.  Phased array 3D MR spectroscopic imaging of the brain at 7 T. , 2008, Magnetic resonance imaging.

[106]  Kawin Setsompop,et al.  High-flip-angle slice-selective parallel RF transmission with 8 channels at 7 T. , 2008, Journal of magnetic resonance.

[107]  Yi Wang,et al.  Quantitative MR susceptibility mapping using piece‐wise constant regularized inversion of the magnetic field , 2008, Magnetic resonance in medicine.

[108]  Vivek K Goyal,et al.  Specific absorption rate studies of the parallel transmission of inner‐volume excitations at 7T , 2008, Journal of magnetic resonance imaging : JMRI.

[109]  Klaus Scheffler,et al.  In Vivo Biochemical 7.0 Tesla Magnetic Resonance: Preliminary Results of dGEMRIC, Zonal T2, and T2* Mapping of Articular Cartilage , 2008, Investigative radiology.

[110]  Z. Cho,et al.  Evaluation of MR angiography at 7.0 Tesla MRI using birdcage radio frequency coils with end caps , 2008, Magnetic resonance in medicine.

[111]  Johannes T Heverhagen,et al.  Time-of-Flight Magnetic Resonance Angiography at 7 Tesla , 2008, Investigative radiology.

[112]  Yulin Ge,et al.  Seven-Tesla magnetic resonance imaging: new vision of microvascular abnormalities in multiple sclerosis. , 2008, Archives of neurology.

[113]  Jullie W Pan,et al.  DEMONSTRATING THE PERIVASCULAR DISTRIBUTION OF MS LESIONS IN VIVO WITH 7-TESLA MRI , 2008, Neurology.

[114]  Zang-HeeCho,et al.  Observation of the Lenticulostriate Arteries in the Human Brain In Vivo Using 7.0T MR Angiography , 2008 .

[115]  Priti Balchandani,et al.  Fat suppression for 1H MRSI at 7T using spectrally selective adiabatic inversion recovery , 2008, Magnetic resonance in medicine.

[116]  Zang-Hee Cho,et al.  Observation of the Lenticulostriate Arteries in the Human Brain In Vivo Using 7.0T MR Angiography , 2008, Stroke.

[117]  Piotr Kozlowski,et al.  Myelin water imaging of multiple sclerosis at 7 T: Correlations with histopathology , 2008, NeuroImage.

[118]  Sharmila Majumdar,et al.  In vivo ultra‐high‐field magnetic resonance imaging of trabecular bone microarchitecture at 7 T , 2008, Journal of magnetic resonance imaging : JMRI.

[119]  Yukihiko Fujii,et al.  In Vivo Visualization of Senile‐Plaque‐Like Pathology in Alzheimer's Disease Patients by MR Microscopy on a 7T System , 2008, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[120]  Steen Moeller,et al.  Ultra-high field parallel imaging of the superior parietal lobule during mental maze solving , 2008, Experimental Brain Research.

[121]  G. Metzger,et al.  Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject‐dependent transmit phase measurements , 2008, Magnetic resonance in medicine.

[122]  A. Koeppen,et al.  The pathogenesis of spinocerebellar ataxia , 2008, The Cerebellum.

[123]  Irene Daum,et al.  Cerebellar contributions to cognitive functions: A progress report after two decades of research , 2008, The Cerebellum.

[124]  Oliver Kraff,et al.  Subjective acceptance of 7 Tesla MRI for human imaging , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[125]  Arend Heerschap,et al.  Towards 1H-MRSI of the human brain at 7T with slice-selective adiabatic refocusing pulses , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[126]  Oliver Kraff,et al.  To TOF or not to TOF: strategies for non-contrast-enhanced intracranial MRA at 7 T , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[127]  Sharmila Majumdar,et al.  In vivo bone and cartilage MRI using fully‐balanced steady‐state free‐precession at 7 tesla , 2007, Magnetic resonance in medicine.

[128]  S Maderwald,et al.  MRI of the knee at 7.0 Tesla. , 2007, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[129]  V. Robin,et al.  Alterations in human ECG due to the MagnetoHydroDynamic effect: A method for accurate R peak detection in the presence of high MHD artifacts , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[130]  David Saloner,et al.  Intracranial time‐of‐flight MR angiography at 7T with comparison to 3T , 2007, Journal of magnetic resonance imaging : JMRI.

[131]  J. Lagendijk,et al.  7 T body MRI: B1 shimming with simultaneous SAR reduction , 2007, Physics in medicine and biology.

[132]  Ray F. Lee,et al.  Perspectives on body MR imaging at ultrahigh field. , 2007, Magnetic resonance imaging clinics of North America.

[133]  H Kromhout,et al.  Cognitive effects of head‐movements in stray fields generated by a 7 Tesla whole‐body MRI magnet , 2007, Bioelectromagnetics.

[134]  Mark E Ladd,et al.  High-Field-Strength Magnetic Resonance: Potential and Limits , 2007, Topics in magnetic resonance imaging : TMRI.

[135]  Ewald Moser,et al.  Direct noninvasive quantification of lactate and high energy phosphates simultaneously in exercising human skeletal muscle by localized magnetic resonance spectroscopy , 2007, Magnetic resonance in medicine.

[136]  Ravinder R Regatte,et al.  Ultra‐high‐field MRI of the musculoskeletal system at 7.0T , 2007, Journal of magnetic resonance imaging : JMRI.

[137]  K. Uğurbil,et al.  Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo , 2007, Magnetic resonance in medicine.

[138]  M. Kleerekoper,et al.  The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures , 1985, Calcified Tissue International.

[139]  S. Trattnig,et al.  T 2-star Relaxation as a means to diffrentiatie Cartilage Repair Tissue after Microfracturing Therapy , 2007 .

[140]  A. Dimitrova,et al.  Activation of cerebellar nuclei comparing finger, foot and tongue movements as revealed by fMRI , 2006, Brain Research Bulletin.

[141]  Ravinder R Regatte,et al.  Ultra-high-field MRI of knee joint at 7.0T: preliminary experience. , 2006, Academic radiology.

[142]  G. Ziegelberger,et al.  International commission on non-ionizing radiation protection. , 2006, Progress in biophysics and molecular biology.

[143]  Kamil Ugurbil,et al.  Potential and feasibility of parallel MRI at high field , 2006, NMR in biomedicine.

[144]  Peter Börnert,et al.  Parallel RF transmission in MRI , 2006, NMR in biomedicine.

[145]  Daniela Berg,et al.  Role of Iron in Neurodegenerative Disorders , 2006, Topics in magnetic resonance imaging : TMRI.

[146]  Steen Moeller,et al.  B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil , 2005, Magnetic resonance in medicine.

[147]  Lawrence L. Wald,et al.  Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters , 2005, NeuroImage.

[148]  Christopher Nimsky,et al.  Proton Magnetic Resonance Spectroscopic Imaging Integrated into Image-guided Surgery: Correlation to Standard Magnetic Resonance Imaging and Tumor Cell Density , 2005, Neurosurgery.

[149]  J. Thornby,et al.  MRI identifies MCI subtypes: vascular versus neurodegenerative , 2005, Journal of the Neurological Sciences.

[150]  K. Uğurbil,et al.  Transmit and receive transmission line arrays for 7 Tesla parallel imaging , 2005, Magnetic resonance in medicine.

[151]  Steven A. Goldstein,et al.  Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone , 2005, Calcified Tissue International.

[152]  T. Mosher,et al.  Cartilage MRI T2 relaxation time mapping: overview and applications. , 2004, Seminars in musculoskeletal radiology.

[153]  P. Boesiger,et al.  Electrodynamics and ultimate SNR in parallel MR imaging , 2004, Magnetic resonance in medicine.

[154]  D. Werring,et al.  Cognitive dysfunction in patients with cerebral microbleeds on T2*-weighted gradient-echo MRI. , 2004, Brain : a journal of neurology.

[155]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[156]  Y. H. Kim,et al.  Cerebral microbleeds are regionally associated with intracerebral hemorrhage , 2004, Neurology.

[157]  Jérôme Honnorat,et al.  Thrombolysis for Ischemic Stroke in Patients with Old Microbleeds on Pretreatment MRI , 2003, Cerebrovascular Diseases.

[158]  K. Uğurbil,et al.  Ultrahigh field magnetic resonance imaging and spectroscopy. , 2003, Magnetic resonance imaging.

[159]  David G Norris,et al.  High field human imaging , 2003, Journal of magnetic resonance imaging : JMRI.

[160]  Alayar Kangarlu,et al.  Effect of static magnetic field exposure of up to 8 Tesla on sequential human vital sign measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[161]  E. Moser,et al.  3.0 Tesla MR systems. , 2003, Investigative radiology.

[162]  Ewald Moser,et al.  High‐resolution 3D proton spectroscopic imaging of the human brain at 3 T: SNR issues and application for anatomy‐matched voxel sizes , 2003, Magnetic resonance in medicine.

[163]  P. Börnert,et al.  Transmit SENSE , 2003, Magnetic resonance in medicine.

[164]  Arijitt Borthakur,et al.  Quantifying sodium in the human wrist in vivo by using MR imaging. , 2002, Radiology.

[165]  N. Logothetis,et al.  Ultra High-Resolution fMRI in Monkeys with Implanted RF Coils , 2002, Neuron.

[166]  T. Dufresne,et al.  Risedronate Preserves Trabecular Architecture and Increases Bone Strength in Vertebra of Ovariectomized Minipigs as Measured by Three‐Dimensional Microcomputed Tomography , 2002, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[167]  Rolf Gruetter,et al.  Direct in vivo measurement of human cerebral GABA concentration using MEGA‐editing at 7 Tesla , 2002, Magnetic resonance in medicine.

[168]  Ming Ding,et al.  Age‐related variations in the microstructure of human tibial cancellous bone , 2002, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[169]  A. Shmuel,et al.  Perfusion‐based high‐resolution functional imaging in the human brain at 7 Tesla , 2002, Magnetic resonance in medicine.

[170]  Arijitt Borthakur,et al.  23Na MRI accurately measures fixed charge density in articular cartilage , 2002, Magnetic resonance in medicine.

[171]  E Moser,et al.  Multivoxel 3D proton spectroscopy in the brain at 1.5 versus 3.0 T: signal-to-noise ratio and resolution comparison. , 2001, AJNR. American journal of neuroradiology.

[172]  K Ugurbil,et al.  In vivo 1H NMR spectroscopy of the human brain at 7 T , 2001, Magnetic resonance in medicine.

[173]  E Moser,et al.  Proton T 1 and T 2 relaxation times of human brain metabolites at 3 Tesla , 2001, NMR in biomedicine.

[174]  V J Schmithorst,et al.  Spatial variation in cartilage T2 of the knee , 2001, Journal of magnetic resonance imaging : JMRI.

[175]  R. Goebel,et al.  7T vs. 4T: RF power, homogeneity, and signal‐to‐noise comparison in head images , 2001, Magnetic resonance in medicine.

[176]  B. J. Murphy Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging , 2001, Skeletal Radiology.

[177]  A. Shmuel,et al.  Imaging brain function in humans at 7 Tesla , 2001, Magnetic resonance in medicine.

[178]  K. T. Scott,et al.  Protocol issues for delayed Gd(DTPA)2–‐enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage , 2001, Magnetic resonance in medicine.

[179]  J R Reichenbach,et al.  High-Resolution MR Venography at 3.0 Tesla , 2000, Journal of computer assisted tomography.

[180]  J. B. Kneeland,et al.  Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. , 2000, Osteoarthritis and cartilage.

[181]  Marco Martins Amatuzzi,et al.  Cartilagem Articular e Osteoartrose , 2000 .

[182]  A. Kangarlu,et al.  Ultra high resolution imaging of the human head at 8 tesla: 2K x 2K for Y2K. , 2000, Journal of computer assisted tomography.

[183]  J R Reichenbach,et al.  Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. , 1997, Radiology.

[184]  F W Wehrli,et al.  Magnetic susceptibility measurement of insoluble solids by NMR: Magnetic susceptibility of bone. , 1997, Magnetic resonance in medicine.

[185]  A M Blamire,et al.  Dynamic shim updating: A new approach towards optimized whole brain shimming , 1996, Magnetic resonance in medicine.

[186]  P. Roughley,et al.  Cartilage proteoglycans: Structure and potential functions , 1994, Microscopy research and technique.

[187]  L S Lohmander,et al.  Articular cartilage and osteoarthrosis. The role of molecular markers to monitor breakdown, repair and disease. , 1994, Journal of anatomy.

[188]  A L Kossovoĭ [Clinical magnetic resonance spectroscopy]. , 1991, Meditsinskaia radiologiia.

[189]  R. Schneiderman,et al.  Some biochemical and biophysical parameters for the study of the pathogenesis of osteoarthritis: a comparison between the processes of ageing and degeneration in human hip cartilage. , 1989, Connective tissue research.

[190]  D. Hoult,et al.  The field dependence of NMR imaging. I. Laboratory assessment of signal‐to‐noise ratio and power deposition , 1986, Magnetic resonance in medicine.

[191]  C N Chen,et al.  The field dependence of NMR imaging. II. Arguments concerning an optimal field strength , 1986, Magnetic resonance in medicine.

[192]  H J Mankin,et al.  Biochemical and metabolic aspects of osteoarthritis. , 1971, The Orthopedic clinics of North America.

[193]  A. Maroudas,et al.  The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. , 1969, Biochimica et biophysica acta.