Skew-constacyclic codes over $\frac{\mathbb{F}_q[v]}{\langle\, v^q-v\, \rangle}$

In this paper, the investigation on the algebraic structure of the ring $\frac{\mathbb{F}_q[v]}{\langle\,v^q-v\,\rangle}$ and the description of its automorphism group, enable to study the algebraic structure of codes and their dual over this ring. We explore the algebraic structure of skew-constacyclic codes, by using a linear Gray map and we determine their generator polynomials. Necessary and sufficient conditions for the existence of self-dual skew cyclic and self-dual skew negacyclic codes over $\frac{\mathbb{F}_q[v]}{\langle\,v^q-v\,\rangle}$ are given.

[1]  Irfan Siap,et al.  Structure of codes over the ring Z3[v]/(v3-v) , 2013, Appl. Algebra Eng. Commun. Comput..

[2]  Felix Ulmer,et al.  Coding with skew polynomial rings , 2009, J. Symb. Comput..

[3]  Delphine Boucher,et al.  A Note on the Existence of Self-Dual Skew Codes over Finite Fields , 2015, C2SI.

[4]  Habibul Islam,et al.  Construction of skew cyclic and skew constacyclic codes over Fq+uFq+vFq , 2017, ArXiv.

[5]  Felix Ulmer,et al.  Skew-cyclic codes , 2006, Applicable Algebra in Engineering, Communication and Computing.

[6]  Sarra Manseri Skew Constacyclic Codes Over the Ring , 2020 .

[7]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[8]  Chaoping Xing,et al.  On Self-Dual Cyclic Codes Over Finite Fields , 2011, IEEE Transactions on Information Theory.

[9]  T. Aaron Gulliver,et al.  On Codes over Fq+vFq+v2Fq , 2017, ArXiv.

[10]  Patrick Solé,et al.  Skew Cyclic Codes over a Non-chain Ring , 2017 .

[11]  Jay A. Wood Duality for modules over finite rings and applications to coding theory , 1999 .

[12]  I. Siap,et al.  Cyclic and constacyclic codes over a non-chain ring , 2014 .

[13]  Nuh Aydin,et al.  A generalization of quasi-twisted codes: Multi-twisted codes , 2017, Finite Fields Their Appl..

[14]  Felix Ulmer,et al.  A Note on the Dual Codes of Module Skew Codes , 2011, IMACC.

[15]  N. Jacobson Finite-dimensional division algebras over fields , 1996 .

[16]  Shixin Zhu,et al.  A class of constacyclic codes over Fp+vFp and its Gray image , 2011, Discret. Math..

[17]  Patrick Solé,et al.  Skew constacyclic codes over Galois rings , 2008, Adv. Math. Commun..

[18]  Hongwei Liu,et al.  Independence of vectors in codes over rings , 2009, Des. Codes Cryptogr..

[19]  Taher Abualrub,et al.  Skew cyclic codes of arbitrary length , 2011, Int. J. Inf. Coding Theory.

[20]  Patanee Udomkavanich,et al.  Skew constacyclic codes over finite chain rings , 2010, Adv. Math. Commun..

[21]  Felix Ulmer,et al.  Self-dual skew codes and factorization of skew polynomials , 2014, J. Symb. Comput..