Avalanche multiplication noise characteristics in thin GaAs p/sup +/-i-n/sup +/ diodes

Avalanche noise measurements have been performed on a range of homojunction GaAs p/sup +/-i-n/sup +/ and n/sup +/-i-p/sup +/ diodes with "i" region widths, /spl omega/ from 2.61 to 0.05 /spl mu/m. The results show that for /spl omega//spl les/1 /spl mu/m the dependence of excess noise factor F on multiplication does not follow the well-established continuous noise theory of McIntyre [1966]. Instead, a decreasing noise factor is observed as /spl omega/ decreases for a constant multiplication. This reduction in F occurs for both electron and hole initiated multiplication in the thinner /spl omega/ structures even though the ionization coefficient ratio is close to unity. The dead-space, the minimum distance a carrier must travel to gain the ionization threshold energy, becomes increasingly important in these thinner structures and largely accounts for the reduction in noise.

[1]  J. David,et al.  A simple model to determine multiplication and noise in avalanche photodiodes , 1998 .

[2]  J. S. Marsland,et al.  On the effect of ionization dead spaces on avalanche multiplication and noise for uniform electric fields , 1990 .

[3]  Joe C. Campbell,et al.  Noise characteristics of thin multiplication region GaAs avalanche photodiodes , 1996 .

[4]  G. Stillman,et al.  The determination of impact ionization coefficients in , 1985 .

[5]  L. M. Rucker,et al.  Theory of carrier multiplication and noise in avalanche devices—Part II: Two-carrier processes , 1979, IEEE Transactions on Electron Devices.

[6]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise in Si and GaAs avalanche photodiodes , 1992 .

[7]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[8]  J. David,et al.  A Monte Carlo investigation of multiplication noise in thin p/sup +/-i-n/sup +/ GaAs avalanche photodiodes , 1998 .

[9]  W. C. Johnson,et al.  Use of a Schottky barrier to measure impact ionization coefficients in semiconductors , 1973 .

[10]  A. Lacaita,et al.  Dead space approximation for impact ionization in silicon , 1996 .

[11]  G. W. Smith,et al.  Non-local aspects of breakdown in pin diodes , 1995 .

[12]  G. Stillman,et al.  The determination of impact ionization coefficients in (100) gallium arsenide using avalanche noise and photocurrent multiplication measurements , 1985, IEEE Transactions on Electron Devices.

[13]  John P. R. David,et al.  Investigation of impact ionization in thin GaAs diodes , 1996 .

[14]  J. S. Marsland,et al.  Lucky drift estimation of excess noise factor for conventional avalanche photodiodes including the dead space effect , 1992 .

[15]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise double-carrier-multiplication avalanche photodiodes , 1992, Optical Society of America Annual Meeting.

[16]  J. David,et al.  Spatial limitations to the application of the lucky-drift theory of impact ionization , 1997 .