Approximate iterations for structured matrices

Important matrix-valued functions f (A) are, e.g., the inverse A−1, the square root $${\sqrt{A}}$$ and the sign function. Their evaluation for large matrices arising from pdes is not an easy task and needs techniques exploiting appropriate structures of the matrices A and f (A) (often f (A) possesses this structure only approximately). However, intermediate matrices arising during the evaluation may lose the structure of the initial matrix. This would make the computations inefficient and even infeasible. However, the main result of this paper is that an iterative fixed-point like process for the evaluation of f (A) can be transformed, under certain general assumptions, into another process which preserves the convergence rate and benefits from the underlying structure. It is shown how this result applies to matrices in a tensor format with a bounded tensor rank and to the structure of the hierarchical matrix technique. We demonstrate our results by verifying all requirements in the case of the iterative computation of A−1 and $${\sqrt{A}}$$.

[1]  Martin J. Mohlenkamp,et al.  Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[2]  W. Hackbusch,et al.  A Sparse ℋ-Matrix Arithmetic. , 2000, Computing.

[3]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[4]  Martin J. Mohlenkamp,et al.  Fast Spectral Projection Algorithms for Density-Matrix Computations , 1999 .

[5]  N. Higham Newton's method for the matrix square root , 1986 .

[6]  Lars Grasedyck,et al.  Existence and Computation of a Low Kronecker-Rank Approximant to the Solution of a Tensor System with Tensor Right-Hand Side , 2003 .

[7]  Eugene E. Tyrtyshnikov,et al.  Matrix‐free iterative solution strategies for large dense linear systems , 1997 .

[8]  G. Beylkin,et al.  Wave propagation using bases for bandlimited functions , 2005 .

[9]  Boris N. Khoromskij,et al.  Hierarchical Kronecker tensor-product approximations , 2005, J. Num. Math..

[10]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[11]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part II. HKT Representation of Certain Operators , 2005, Computing.

[12]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[13]  Bradley K. Alpert,et al.  Adaptive solution of partial di erential equations in multiwavelet bases , 2002 .

[14]  Judith M. Ford,et al.  Combining Kronecker Product Approximation with Discrete Wavelet Transforms to Solve Dense, Function-Related Linear Systems , 2003, SIAM J. Sci. Comput..

[15]  Eugene E. Tyrtyshnikov Mosaic Ranks and Skeletons , 1996, WNAA.

[16]  Lars Grasedyck,et al.  Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.

[17]  W. Hackbusch,et al.  Numerische Mathematik Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with L ∞-coefficients , 2002 .

[18]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part I. Separable Approximation of Multi-variate Functions , 2005, Computing.

[19]  Boris N. Khoromskij,et al.  A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.

[20]  Peter Lancaster,et al.  Newton's Method for a Generalized Inverse Eigenvalue Problem , 1997, Numer. Linear Algebra Appl..

[21]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[22]  Boris N. Khoromskij,et al.  Solution of Large Scale Algebraic Matrix Riccati Equations by Use of Hierarchical Matrices , 2003, Computing.

[23]  Eugene E. Tyrtyshnikov,et al.  Structured matrices: recent developments in theory and computation , 2001 .

[24]  W. Hackbusch,et al.  A sparse H -matrix arithmetic: general complexity estimates , 2000 .

[25]  Judith M. Ford,et al.  Matrix approximations and solvers using tensor products and non-standard wavelet transforms related to irregular grids , 2004 .

[26]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[27]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[28]  Beatrice Meini,et al.  Solving block banded block Toeplitz systems with structured blocks: algorithms and applications , 2001 .

[29]  Ivan P. Gavrilyuk,et al.  $\mathcal{H}$-Matrix approximation for the operator exponential with applications , 2002, Numerische Mathematik.

[30]  R. Byers,et al.  The Matrix Sign Function Method and the Computation of Invariant Subspaces , 1997, SIAM J. Matrix Anal. Appl..

[31]  Eugene E. Tyrtyshnikov,et al.  Incomplete Cross Approximation in the Mosaic-Skeleton Method , 2000, Computing.

[32]  Ivan Oseledets,et al.  Approximate inversion of matrices in the process of solving a hypersingular integral equation , 2005 .

[33]  E. Tyrtyshnikov,et al.  Tensor properties of multilevel Toeplitz and related matrices , 2006 .

[34]  V. Pan Structured Matrices and Polynomials , 2001 .

[35]  Ivan P. Gavrilyuk,et al.  Hierarchical Tensor-Product Approximation to the Inverse and Related Operators for High-Dimensional Elliptic Problems , 2004, Computing.

[36]  James Hardy Wilkinson,et al.  Rounding errors in algebraic processes , 1964, IFIP Congress.

[37]  E. Tyrtyshnikov Mosaic-Skeleton approximations , 1996 .

[38]  Ivan P. Gavrilyuk,et al.  Data-sparse approximation to a class of operator-valued functions , 2004, Math. Comput..

[39]  HackbuschW. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .

[40]  Ronald Kriemann,et al.  Hierarchical Matrices Based on a Weak Admissibility Criterion , 2004, Computing.

[41]  G. Schulz Iterative Berechung der reziproken Matrix , 1933 .

[42]  J HighamNicholas Newton's method for the matrix square root , 1986 .

[43]  A. Laub,et al.  The matrix sign function , 1995, IEEE Trans. Autom. Control..

[44]  Victor Y. Pan,et al.  Newton's iteration for the inversion of structured matrices , 2001 .

[45]  E. Tyrtyshnikov Tensor approximations of matrices generated by asymptotically smooth functions , 2003 .

[46]  Ivan P. Gavrilyuk,et al.  Data-sparse approximation to the operator-valued functions of elliptic operator , 2003, Math. Comput..

[47]  Wolfgang Hackbusch,et al.  Construction and Arithmetics of H-Matrices , 2003, Computing.

[48]  Ilghiz Ibraghimov,et al.  Application of the three‐way decomposition for matrix compression , 2002, Numer. Linear Algebra Appl..

[49]  Alex Yu. Yeremin,et al.  Matrix-free iterative solution strategies for large dense linear systems , 1997, Numer. Linear Algebra Appl..

[50]  E. Tyrtyshnikov Kronecker-product approximations for some function-related matrices , 2004 .

[51]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[52]  C. Loan,et al.  Approximation with Kronecker Products , 1992 .

[53]  Nicholas J. Higham,et al.  Stable iterations for the matrix square root , 1997, Numerical Algorithms.