A generalized single‐channel method for retrieving land surface temperature from remote sensing data

[1] Many papers have developed algorithms to retrieve land surface temperature from at-sensor and land surface emissivity data. These algorithms have been specified for different thermal sensors on board satellites, i.e., the algorithm used for one thermal sensor (or a combination of thermal sensors) cannot be used for other thermal sensor. The main goal of this paper is to propose a generalized single-channel algorithm that only uses the total atmospheric water vapour content and the channel effective wavelength (assuming that emissivity is known), and can be applied to thermal sensors characterized with a FWHM (Full-Width Half-Maximum) of around 1 μm actually operative on board satellites. The main advantage of this algorithm compared with the other single-channel methods is that in-situ radiosoundings or effective mean atmospheric temperature values are not needed, whereas the main advantage of this algorithm compared with split-window and dual-angle methods is that it can be applied to different thermal sensors using the same equation and coefficients. The validation for different test sites shows root mean square deviations lower than 2 K for AVHRR channel 4 (λ ≈ 10.8 μm) and ATSR-2 channel 2 (λ ≈ 11 μm), and lower than 1.5 K for Landsat Thematic Mapper (TM) band 6 (λ ≈ 11.5 μm).

[1]  A. Chedin,et al.  A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas , 1981 .

[2]  J. C. Price,et al.  Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer , 1984 .

[3]  Z. Li,et al.  Towards a local split window method over land surfaces , 1990 .

[4]  A. Goetz,et al.  Column atmospheric water vapor and vegetation liquid water retrievals from Airborne Imaging Spectrometer data , 1990 .

[5]  Bo-Cai Gao,et al.  Determination of total column water vapor in the atmosphere at high spatial resolution from AVIRIS data using spectral curve fitting and band ratioing techniques , 1990, Other Conferences.

[6]  G. Guyot,et al.  Physical measurements and signatures in remote sensing , 1992 .

[7]  Yoram J. Kaufman,et al.  Remote sensing of water vapor in the near IR from EOS/MODIS , 1992, IEEE Trans. Geosci. Remote. Sens..

[8]  E. Mcclain,et al.  A correction for Saharan dust effects on satellite sea surface temperature measurements , 1992 .

[9]  A. Goetz,et al.  Software for the derivation of scaled surface reflectances from AVIRIS data , 1992 .

[10]  Ian J. Barton,et al.  Satellite-derived Sea Surface Temperatures-A Comparison between Operational, Theoretical, and Experimental Algorithms , 1992 .

[11]  Zhao-Liang Li,et al.  Impact of the atmospheric transmittance and total water vapor content in the algorithms for estimating satellite sea surface temperatures , 1993, IEEE Trans. Geosci. Remote. Sens..

[12]  A. Prata Land surface temperatures derived from the advanced very high resolution radiometer and the along‐track scanning radiometer: 1. Theory , 1993 .

[13]  José A. Sobrino,et al.  Theoretical split-window algorithms for determining the actual surface temperature , 1993 .

[14]  Alfred J Prata,et al.  Land surface temperatures derived from the advanced very high resolution radiometer and the along‐track scanning radiometer: 2. Experimental results and validation of AVHRR algorithms , 1994 .

[15]  Carlo Ulivieri,et al.  A split window algorithm for estimating land surface temperature from satellites , 1994 .

[16]  K. Jon Ranson,et al.  The Boreal Ecosystem-Atmosphere Study (BOREAS) : an overview and early results from the 1994 field year , 1995 .

[17]  Fran Li,et al.  Surface temperature and emissivity at various scales: Definition, measurement and related problems , 1995 .

[18]  Yann Kerr,et al.  An experimental study of angular effects on surface temperature for various plant canopies and bare soils , 1995 .

[19]  José A. Sobrino,et al.  Monitoring the Iberian Peninsula land cover using NOAA-AVHRR data , 1997 .

[20]  Kalifa Goita,et al.  Surface temperature and emissivity separability over land surface from combined TIR and SWIR AVHRR data , 1997, IEEE Trans. Geosci. Remote. Sens..

[21]  Aplicación de la técnica de composición del máximo NDVI al seguimiento de la cobertura terrestre en la Península Ibérica , 1998 .

[22]  Shuichi Rokugawa,et al.  A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..

[23]  A. Karnieli,et al.  Progress in the remote sensing of land surface temperature and ground emissivity using NOAA-AVHRR data , 1999 .

[24]  Alan R. Gillespie A new approach for temperature and emissivity separation , 2000 .

[25]  José A. Sobrino,et al.  Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco , 2000 .

[26]  A. Karnieli,et al.  A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region , 2001 .

[27]  Albert Rango,et al.  Temperature and emissivity separation from multispectral thermal infrared observations , 2002 .

[28]  H. Fischer,et al.  Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends , 2002 .

[29]  J. A. Sobrino,et al.  Surface temperature and water vapour retrieval from MODIS data , 2003 .