The Bishop–Phelps–Bollobás theorem on bounded closed convex sets

[1]  Richard M. Aron,et al.  The Bishop-Phelps-Bollobás theorem and Asplund operators , 2011 .

[2]  Victor Lomonosov,et al.  A counterexample to the Bishop-Phelps Theorem in complex spaces , 2000 .

[3]  Sun Kwang Kim The Bishop-Phelps-Bollobás Theorem for operators from c0 to uniformly convex spaces , 2013 .

[4]  Domingo García,et al.  A multilinear Lindenstrauss theorem , 2006 .

[5]  C. Stegall Optimization of functions on certain subsets of Banach spaces , 1978 .

[6]  Yun Sung Choi,et al.  The Bishop–Phelps–Bollobás theorem for L(L1(μ),L∞[0,1]) , 2011 .

[7]  Jonathan R. Partington,et al.  Norm attaining operators , 1982 .

[8]  I. Ekeland On the variational principle , 1974 .

[9]  Yun Sung Choi,et al.  The Bishop–Phelps–Bollobás theorem for operators from L1(μ) to Banach spaces with the Radon–Nikodým property , 2011 .

[10]  Domingo García,et al.  THE BISHOP–PHELPS–BOLLOBÁS PROPERTY FOR HERMITIAN FORMS ON HILBERT SPACES , 2014 .

[11]  R. Phelps,et al.  A proof that every Banach space is subreflexive , 1961 .

[12]  Han Ju Lee,et al.  Uniform Convexity and the Bishop–Phelps–Bollobás Property , 2014 .

[13]  Yun Sung Choi,et al.  The Bishop-Phelps-Bollobás version of Lindenstrauss properties A and B , 2013, 1305.6420.

[14]  Domingo García,et al.  The Bishop-Phelps-Bollobás Theorem for bilinear forms , 2013 .

[15]  Domingo García,et al.  The Bishop-Phelps-Bollobás theorem for operators , 2008 .

[16]  Rafael Payá,et al.  Norm attaining operators from $L_1(\mu )$ into $L_\infty (\nu )$ , 2000 .

[17]  Joram Lindenstrauss,et al.  On operators which attain their norm , 1963 .

[18]  Béla Bollobás,et al.  An Extension to the Theorem of Bishop and Phelps , 1970 .

[19]  Jean Bourgain,et al.  On dentability and the Bishop-Phelps property , 1977 .

[20]  Petr Hájek,et al.  Banach Space Theory , 2011 .