Guaranteed SLAM - An interval approach

This paper proposes a new approach, interval Simultaneous Localization and Mapping (i-SLAM), which addresses the robotic mapping problem in the context of interval methods, where the robot sensor noise is assumed bounded. With no prior knowledge about the noise distribution or its probability density function, we derive and present necessary conditions to guarantee the map convergence even in the presence of nonlinear observation and motion models. These conditions may require the presence of some anchoring landmarks with known locations. The performance of i-SLAM is compared with the probabilistic counterparts in terms of accuracy and efficiency.

[1]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .

[2]  Sebastian Thrun,et al.  The Graph SLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures , 2006, Int. J. Robotics Res..

[3]  Freda Kemp,et al.  An Introduction to Sequential Monte Carlo Methods , 2003 .

[4]  E. Hansen Interval Arithmetic in Matrix Computations, Part I , 1965 .

[5]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  A. Tsourdos,et al.  Sensor based robot localisation and navigation: using interval analysis and extended Kalman filter , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[7]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[8]  Wolfram Burgard,et al.  A Tutorial on Graph-Based SLAM , 2010, IEEE Intelligent Transportation Systems Magazine.

[9]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[10]  Sebastian Thrun,et al.  Integrating Grid-Based and Topological Maps for Mobile Robot Navigation , 1996, AAAI/IAAI, Vol. 2.

[11]  Visakan Kadirkamanathan,et al.  Autonomous crowds tracking with box particle filtering and convolution particle filtering , 2016, Autom..

[12]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[13]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[14]  Shahram Izadi,et al.  Modeling Kinect Sensor Noise for Improved 3D Reconstruction and Tracking , 2012, 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission.

[15]  Amadou Gning,et al.  Constraints propagation techniques on intervals for a guaranteed localization using redundant data , 2006, Autom..

[16]  Sebastian Thrun,et al.  Exploration and model building in mobile robot domains , 1993, IEEE International Conference on Neural Networks.

[17]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[18]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[19]  Tom Drummond,et al.  Scalable Monocular SLAM , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[20]  Luc Jaulin,et al.  Interval SLAM for underwater robots; a new experiment , 2010 .

[21]  Y. Candau,et al.  Set membership state and parameter estimation for systems described by nonlinear differential equations , 2004, Autom..

[22]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[23]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[24]  E. Hansen,et al.  An interval Newton method , 1983 .

[25]  Luc Jaulin,et al.  Contractor programming , 2009, Artif. Intell..

[26]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[27]  Alexandru Stancu,et al.  Three-dimensional interest point detection and description using Speeded-Up Robust Features and histograms of oriented points , 2015, 2015 19th International Conference on System Theory, Control and Computing (ICSTCC).

[28]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[29]  Luc Jaulin,et al.  3D Reconstruction Using Interval Methods on the Kinect Device Coupled with an IMU , 2013 .

[30]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[31]  Luc Jaulin,et al.  Using interval methods in the context of robust localization of underwater robots , 2011, 2011 Annual Meeting of the North American Fuzzy Information Processing Society.

[32]  Sang Wook Lee,et al.  Structured-light stereo: Comparative analysis and integration of structured-light and active stereo , 2013 .

[33]  Michael Rabadi,et al.  Kernel Methods for Machine Learning , 2015 .

[34]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[35]  Paul Newman,et al.  SLAM-Loop Closing with Visually Salient Features , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[36]  Andrew J. Davison,et al.  DTAM: Dense tracking and mapping in real-time , 2011, 2011 International Conference on Computer Vision.

[37]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[38]  Paolo Pirjanian,et al.  The vSLAM Algorithm for Robust Localization and Mapping , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[39]  Antonios Tsourdos,et al.  Sensor based robot localisation and navigation: using interval analysis and unscented Kalman filter , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[40]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[41]  Josep Vehí,et al.  Modal Interval Analysis: New Tools for Numerical Information , 2013 .

[42]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[43]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[44]  Janne Heikkilä,et al.  A four-step camera calibration procedure with implicit image correction , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[45]  Trevor Darrell,et al.  The pyramid match kernel: discriminative classification with sets of image features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[46]  E. Hansen,et al.  Interval Arithmetic in Matrix Computations, Part II , 1965 .

[47]  Ronald Parr,et al.  DP-SLAM: fast, robust simultaneous localization and mapping without predetermined landmarks , 2003, IJCAI 2003.

[48]  Wolfram Burgard,et al.  An efficient fastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[49]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[51]  Luc Jaulin Range-Only SLAM With Occupancy Maps: A Set-Membership Approach , 2011, IEEE Transactions on Robotics.

[52]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[53]  Branko Ristic,et al.  Bernoulli Particle/Box-Particle Filters for Detection and Tracking in the Presence of Triple Measurement Uncertainty , 2012, IEEE Transactions on Signal Processing.

[54]  Jari Saarinen,et al.  Independent Markov chain occupancy grid maps for representation of dynamic environment , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[55]  Kourosh Khoshelham,et al.  Accuracy analysis of kinect depth data , 2012 .

[56]  Jian Wan Computationally reliable approaches of contractive MPC for discrete-time systems , 2007 .

[57]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[58]  Dorian Gálvez-López,et al.  Bags of Binary Words for Fast Place Recognition in Image Sequences , 2012, IEEE Transactions on Robotics.

[59]  Gerhard Lakemeyer,et al.  Exploring artificial intelligence in the new millennium , 2003 .

[60]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  Alexandru Stancu,et al.  Computing Capture Tubes , 2014, SCAN.

[62]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[63]  Abdelhafid Elouardi,et al.  Guaranteed simultaneous localization and mapping algorithm using interval analysis , 2014, 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV).

[64]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[65]  Sebastien Lagrange,et al.  On Sufficient Conditions of the Injectivity: Development of a Numerical Test Algorithm via Interval Analysis , 2007, Reliab. Comput..

[66]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[67]  Y. Bar-Shalom Tracking and data association , 1988 .

[68]  Davide Scaramuzza,et al.  SVO: Fast semi-direct monocular visual odometry , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[69]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[70]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Luc Jaulin,et al.  Introduction to the algebra of separators with application to path planning , 2014, Eng. Appl. Artif. Intell..

[72]  Pat Langley,et al.  MAGELLAN: An Integrated Adaptive Architecture for Mobile Robotics , 1998 .

[73]  Luc Jaulin,et al.  Inner and Outer Approximations of Probabilistic Sets , 2014 .

[74]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[75]  Peter Cheeseman,et al.  On the Representation and Estimation of Spatial Uncertainty , 1986 .

[76]  Sebastian Thrun,et al.  FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges , 2003, IJCAI.

[77]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[78]  Hauke Strasdat,et al.  Scale Drift-Aware Large Scale Monocular SLAM , 2010, Robotics: Science and Systems.

[79]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[80]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[81]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[82]  Jianguo Liu,et al.  Precise Subpixel Disparity Measurement From Very Narrow Baseline Stereo , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[83]  Frank Dellaert,et al.  Structure from motion without correspondence , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[84]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[85]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[86]  Fahed Abdallah,et al.  A New Estimation Method for Multisensor Fusion by using Interval Analysis and Particle Filtering , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[87]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[88]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[89]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[90]  Josep Vehí,et al.  Guaranteed set-point computation with application to the control of a sailboat , 2010 .

[91]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[92]  A. Neumaier Interval methods for systems of equations , 1990 .

[93]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[94]  Luc Jaulin,et al.  Robust set-membership state estimation; application to underwater robotics , 2009, Autom..

[95]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[96]  Rémy Guyonneau,et al.  Guaranteed interval analysis localization for mobile robots , 2014, Adv. Robotics.

[97]  L. Jaulin,et al.  Capture basin approximation using interval analysis , 2011 .

[98]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[99]  Gamini Dissanayake,et al.  Convergence and Consistency Analysis for Extended Kalman Filter Based SLAM , 2007, IEEE Transactions on Robotics.

[100]  Hans P. Moravec Sensor Fusion in Certainty Grids for Mobile Robots , 1988, AI Mag..

[101]  Vincent Lepetit,et al.  DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[102]  J. Platt Sequential Minimal Optimization : A Fast Algorithm for Training Support Vector Machines , 1998 .

[103]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[104]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[105]  Alexandru Stancu,et al.  Rigid Transformation Using Interval Analysis for Robot Motion Estimation , 2015, 2015 20th International Conference on Control Systems and Computer Science.