A comparison of Cahn-Hilliard and Navier-Stokes-Cahn-Hilliard models on manifolds

We consider phase-field models with and without lateral flow for the numerical simulation of lateral phase separation and coarsening in lipid membranes. For the numerical solution of these models, we apply an unfitted finite element method that is flexible in handling complex and possibly evolving shapes in the absence of an explicit surface parametrization. Through several numerical tests, we investigate the effect of the presence of lateral flow on the evolution of phases. In particular, we focus on understanding how variable line tension, viscosity, membrane composition, and surface shape affect the pattern formation.

[1]  I. Kevrekidis,et al.  Sticky Patches on Lipid Nanoparticles Enable the Selective Targeting and Killing of Untargetable Cancer Cells. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[2]  K. Kawasaki,et al.  Phase transitions and shapes of two component membranes and vesicles I: strong segregation limit , 2016 .

[3]  Dominic Breit,et al.  Weak solutions for a non-Newtonian diffuse interface model with different densities , 2015, 1509.05663.

[4]  Maxim A. Olshanskii,et al.  A Trace Finite Element Method for PDEs on Evolving Surfaces , 2016, SIAM J. Sci. Comput..

[5]  Axel Voigt,et al.  Dynamics of multicomponent vesicles in a viscous fluid , 2010, J. Comput. Phys..

[6]  D. Tieleman,et al.  Computer simulations of lipid membrane domains. , 2013, Biochimica et biophysica acta.

[7]  Frederick A. Heberle,et al.  Phase separation in lipid membranes. , 2011, Cold Spring Harbor perspectives in biology.

[8]  A. Mark,et al.  Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles. , 2003, Journal of the American Chemical Society.

[9]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[10]  David Andelman,et al.  Equilibrium shape of two-component unilamellar membranes and vesicles , 1992 .

[11]  Frederick A. Heberle,et al.  Lipid Rafts: Controversies Resolved, Mysteries Remain. , 2020, Trends in cell biology.

[12]  Axel Voigt,et al.  Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Seifert,et al.  Curvature-induced lateral phase segregation in two-component vesicles. , 1993, Physical review letters.

[14]  P. Schwille,et al.  Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. , 2012, Biochimica et biophysica acta.

[15]  E. Favvas,et al.  What is spinodal decomposition , 2008 .

[16]  A. Quaini,et al.  A computational study of lateral phase separation in biological membranes , 2018, International journal for numerical methods in biomedical engineering.

[17]  Annalisa Quaini,et al.  Experimental validation of a phase-field model to predict coarsening dynamics of lipid domains in multicomponent membranes , 2020, Biochimica et biophysica acta. Biomembranes.

[18]  Annalisa Quaini,et al.  A decoupled, stable, and linear FEM for a phase-field model of variable density two-phase incompressible surface flow , 2021, Computer Methods in Applied Mechanics and Engineering.

[19]  Arnold Reusken,et al.  Error analysis of higher order Trace Finite Element Methods for the surface Stokes equation , 2019, J. Num. Math..

[20]  Petra Schwille,et al.  Probing Lipid Mobility of Raft-exhibiting Model Membranes by Fluorescence Correlation Spectroscopy* , 2003, Journal of Biological Chemistry.

[21]  F. Solis,et al.  Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties. , 2014, The Journal of chemical physics.

[22]  Annalisa Quaini,et al.  Numerical modelling of phase separation on dynamic surfaces , 2019, J. Comput. Phys..

[23]  P. Hohenberg,et al.  Theory of Dynamic Critical Phenomena , 1977 .

[24]  G. Putzel,et al.  Coarsening dynamics of domains in lipid membranes. , 2012, Biophysical journal.

[25]  Mohamed Laradji,et al.  Dynamics of domain growth in self-assembled fluid vesicles. , 2004, Physical review letters.

[26]  Sarah L Veatch,et al.  Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. , 2003, Biophysical journal.

[27]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[28]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[29]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[30]  I. Nitschke,et al.  A finite element approach to incompressible two-phase flow on manifolds , 2012, Journal of Fluid Mechanics.

[31]  Q. Du,et al.  Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches , 2006, Journal of Mathematical Biology.

[32]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[33]  Michael Loran Dustin,et al.  Localizing order to boost signaling , 2017, eLife.

[34]  J. Lowengrub,et al.  Locomotion, wrinkling, and budding of a multicomponent vesicle in viscous fluids , 2012 .

[35]  M. Olshanskii A low order Galerkin finite element method for the Navier–Stokes equations of steady incompressible flow: a stabilization issue and iterative methods , 2002 .

[36]  Stavroula Sofou,et al.  Masking and triggered unmasking of targeting ligands on liposomal chemotherapy selectively suppress tumor growth in vivo. , 2013, Molecular pharmaceutics.

[37]  Christoph Lehrenfeld,et al.  Analysis of a High-Order Trace Finite Element Method for PDEs on Level Set Surfaces , 2016, SIAM J. Numer. Anal..

[38]  Ilpo Vattulainen,et al.  Assessing the Nature of Lipid Raft Membranes , 2007, PLoS Comput. Biol..

[39]  Y. Maitani,et al.  Higher liposomal membrane fluidity enhances the in vitro antitumor activity of folate-targeted liposomal mitoxantrone. , 2009, Molecular pharmaceutics.

[40]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[41]  H. Garcke,et al.  Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants , 2017, Communications on Pure & Applied Analysis.

[42]  Fred C. MacKintosh,et al.  Shape Transformations of Domains in Mixed-Fluid Films and Bilayer Membranes , 1994 .

[43]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .