Effect of foundation modelling on the fatigue lifetime of a monopile-based offshore wind turbine

Abstract. Several studies have emphasized the importance of modelling foundation response with representative damping and stiffness characteristics in integrated analyses of offshore wind turbines (OWTs). For the monopile foundation, the industry standard for pile analysis has shown to be inaccurate, and alternative models that simulate foundation behaviour more accurately are needed. As fatigue damage is a critical factor in the design phase, this study investigates how four different soil-foundation models affect the fatigue damage of an OWT with a monopile foundation. This study shows how both stiffness and damping properties have a noticeable effect on the fatigue damage, in particular for idling cases. At mud-line, accumulated fatigue damage varied up to 22 % depending on the foundation model used.

[1]  B. Schmidt,et al.  Upwind design basis (WP4: offshore foundations and support structures) , 2010 .

[2]  Lance Manuel,et al.  Comparing Estimates of Wind Turbine Fatigue Loads Using Time-Domain and Spectral Methods , 2007 .

[3]  Michael Muskulus,et al.  Influence of Soil Parameters on the Fatigue Lifetime of Offshore Wind Turbines with Monopile Support Structure , 2016 .

[4]  Mohammed M. Ettouney,et al.  Dynamic Behavior of Pile Groups , 1983 .

[5]  Mark Randolph,et al.  Response of Piles with Wings to Monotonic and Cyclic Lateral Loading in Sand , 2012 .

[6]  Wilfred D. Iwan,et al.  On a Class of Models for the Yielding Behavior of Continuous and Composite Systems , 1967 .

[7]  Hans Petter Jostad,et al.  Finite Element Analyses Applied in Design of Foundations and Anchors for Offshore Structures , 2011 .

[8]  Cristina de Hollanda Cavalcanti Tsuha,et al.  Piles under cyclic and dynamic loads Far-field seismic soil-pile-raft interaction in normally consolidated kaolin clay , 2010 .

[9]  M. Kühn Dynamics and design optimisation of offshore wind energy conversion systems , 2001 .

[10]  Bryan A. McCabe,et al.  Biaxial Loading of Offshore Monopiles: Numerical Modeling , 2017 .

[11]  Philippe Jeanjean,et al.  Re-assessment of P-Y curves for soft clays from centrifuge testing and finite element modeling , 2009 .

[12]  M. B. Zaaijer,et al.  Foundation modelling to assess dynamic behaviour of offshore wind turbines , 2006 .

[13]  Jacques Garnier,et al.  Horizontal cyclic loading of piles installed in sand: study of the pile head displacement and maximum bending moment , 2004 .

[14]  B. R. Grubbs,et al.  Field Testing of Laterally Loaded Piles In Sand , 1974 .

[15]  Sanjay R. Arwade,et al.  Foundation damping and the dynamics of offshore wind turbine monopiles , 2015 .

[16]  Paul Doherty,et al.  Laterally loaded monopile design for offshore wind farms , 2012 .

[17]  Lewis Edgers,et al.  Finite Element Analysis of an Offshore Wind Turbine Monopile , 2010 .

[18]  J. Jonkman,et al.  Definition of a 5-MW Reference Wind Turbine for Offshore System Development , 2009 .

[19]  M. B. Zaayer,et al.  Simplified fatigue assessment of offshore wind support structures accounting for variations in a farm , 2015 .

[20]  M. Randolph,et al.  The response of flexible piles to lateral loading , 1981 .

[21]  Farrel Zwerneman,et al.  22nd Edition of API RP 2A Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms – Working Stress Design , 2010 .

[22]  Tor Anders Nygaard,et al.  Development, Verification and Validation of 3DFloat; Aero-servo-hydro-elastic Computations of Offshore Structures , 2016 .

[23]  Lars Bo Ibsen,et al.  Laboratory Testing of Cyclic Laterally Loaded Pile in Cohesionless Soil , 2013 .

[24]  J. Mann Wind field simulation , 1998 .

[25]  Turan Dirlik,et al.  Application of computers in fatigue analysis , 1985 .

[26]  R.B.J. Brinkgreve,et al.  Validation of empirical formulas to derive model parameters for sands , 2010 .

[27]  Sanjay R. Arwade,et al.  Dynamic Mudline Damping for Offshore Wind Turbine Monopiles , 2014 .

[28]  Ole Hededal,et al.  Centrifuge modelling of a laterally cyclic loaded pile , 2010 .

[29]  Martin Achmus,et al.  Behavior of monopile foundations under cyclic lateral load , 2009 .

[30]  Steinar Nordal,et al.  Impact vibration test of monopile foundation model in dry sand , 2016 .

[31]  Y. Garbatov,et al.  Spectral fatigue assessment of an offshore wind turbine structure under wave and wind loading , 2013 .

[32]  Amir M. Kaynia,et al.  Implementation of a non-linear foundation model for soil-structure interaction analysis of offshore wind turbines in FAST , 2017 .

[33]  Harry G. Poulos,et al.  Closure of "Behavior of Laterally Loaded Piles: I-Single Piles" , 1971 .

[34]  Lymon C. Reese,et al.  Field Testing and Analysis of Laterally Loaded Piles om Stiff Clay , 1975 .

[35]  Kerstin Lesny,et al.  Finite-Element-Modelling of Large Diameter Monopiles for Offshore Wind Energy Converters , 2006 .

[36]  Patrick Guillaume,et al.  Experimental and computational damping estimation of an offshore wind turbine on a monopile foundation , 2013 .

[37]  Patrik Passon,et al.  Memorandum Derivation and Description of the Soil-Pile-Interaction Models , 2006 .

[38]  Lymon C. Reese,et al.  Single Piles and Pile Groups Under Lateral Loading , 2000 .

[39]  Dan Kallehave,et al.  Observed variations of monopile foundation stiffness , 2015 .

[40]  Hendrik Sturm,et al.  Alternative Numerical Pile Foundation Models for Integrated Analyses of Monopile-based Offshore Wind Turbines , 2016 .

[41]  Jean-Louis Briaud,et al.  Full Scale Cyclic Lateral Load Tests on Six Single Piles in Sand , 1988 .

[42]  Sung-Ryul Kim,et al.  Effect of monopile foundation modeling on the structural response of a 5-MW offshore wind turbine tower , 2015 .

[43]  Lidija Zdravković,et al.  Field testing of large diameter piles under lateral loading for offshore wind applications , 2015 .

[44]  Lars Vabbersgaard Andersen,et al.  Cross-wind modal properties of offshore wind turbines identified by full scale testing , 2013 .

[45]  I. M. Smith,et al.  Numerical Methods in Geotechnical Engineering , 1994 .

[46]  Harry G. Poulos,et al.  Pile foundation analysis and design , 1980 .

[47]  Mehmet Baris Darendeli,et al.  Development of a new family of normalized modulus reduction and material damping curves , 2001 .

[48]  Lars Vabbersgaard Andersen,et al.  Dynamic response sensitivity of an offshore wind turbine for varying subsoil conditions , 2015 .

[49]  Lars Vabbersgaard Andersen,et al.  Comparing Sources of Damping of Cross-Wind Motion , 2009 .

[50]  G. Masing,et al.  Eigenspannungen und Verfestigung beim Messing , 1926 .

[51]  Inge Lotsberg,et al.  Background for New Revision of DNV-RP-C203 Fatigue Design of Offshore Steel Structures , 2010 .

[52]  G. Houlsby,et al.  Foundations for offshore wind turbines , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[53]  Jason Jonkman,et al.  FAST User's Guide , 2005 .

[54]  Steffen Aasen,et al.  Soil-structure interaction modelling for an offshore wind turbine with monopile foundation , 2016 .

[55]  J. Jonkman,et al.  Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment , 2010 .

[56]  Lars Vabbersgaard Andersen,et al.  Assessment of lumped-parameter models for rigid footings , 2010 .

[57]  W. G. Versteijlen Estimation of the Vibration Decrement of an Offshore Wind Turbine Support Structure Caused by its Interaction with Soil , 2011 .

[58]  Ning Zhang,et al.  Dynamic response sensitivity of an offshore wind turbine for multiple load condition , 2017 .