Annealing effects of polymers and their underlying molecular mechanisms

Abstract This paper indicates that changes in chain mobility, heat capacity, WAXS crystallinity, SAXS long period, SAXS peak intensity, specific volume and morphology as a function of increasing temperature, occur in three fairly distinct annealing ranges (I, II and III) that are more or less the same for all crystallized polymers with a lamellar morphology. It is shown that none of the proposed molecular models to date, including the well-known fold surface premelting model, can satisfactorily account for all the experimental data. However, a new molecular interpretation, based primarily on electron microscopy and SAXS studies of changes such as lateral ‘melting’ from edges of microparacrystallites (mPC) within the lamellae seen at the annealing temperatures can account for the data. With our new molecular interpretation, the effect of temperature increase is established to result in a slight breakup of the laterally aligned mPC within the lamellae at low annealing temperatures in range I, and selective lateral ‘melting’ of the exposed mPC and recrystallization at higher annealing temperatures in ranges II and III, with the recrystallization being very limited in range III. Annealing effects seen in cold- or hot-drawn polymers with a fibrillar morphology can also be readily accounted for by this very general molecular mechanism occurring in the same annealing temperature ranges.

[1]  E. Fischer,et al.  Long Periods in Drawn Polyethylene , 1962 .

[2]  G. Yeh,et al.  Strain-induced crystallization and reversible phenomena in transpolyisoprene. I. Electron microscopy studies , 1973 .

[3]  G. Yeh,et al.  Selected-area small-angle electron diffraction , 1967 .

[4]  G. Yeh,et al.  Mechanism of spherulitic crystallization as deduced from observations of partially crystallized glassy polystyrene , 1972 .

[5]  R. Hosemann,et al.  Twist-Korngrenzen und andere parakristalline Gitterstörungen in Polyäthylen-Einkristallen , 1966 .

[6]  J. Schultz,et al.  Polymer materials science , 1974 .

[7]  G. Yeh,et al.  Strain-induced crystallization of polyethylene terephthalate. , 1967 .

[8]  P. H. Geil Polymer Single Crystals , 1963 .

[9]  M. Takayanagi Some morphological factors in thermomechanical analysis of crystalline polymers , 1974 .

[10]  E. Fischer Effect of annealing and temperature on the morphological structure of polymers , 1972 .

[11]  G. Yeh,et al.  Crystallization of polyethylene terephthalate from the glassy amorphous state , 1967 .

[12]  G. Yeh,et al.  Morphology of strain‐induced crystallization of natural rubber. I. Electron microscopy on uncrosslinked thin film , 1972 .

[13]  L. Mandelkern,et al.  THE EFFECT OF MOLECULAR WEIGHT ON THE MELTING TEMPERATURE AND FUSION OF POLYETHYLENE. , 1965, The Journal of physical chemistry.

[14]  H. Hendus,et al.  Schmelzpunkt und kristallitgröße von aus schmelze und lösung kristallisiertem polyäthylen , 1968 .

[15]  E. Passaglia,et al.  Kinetics of polymer crystallization from solution and the melt , 1969 .

[16]  E. W. Fischer,et al.  Zusammenhänge zwischen der Kolloidstruktur kristalliner Hochpolymerer und ihrem Schmelz- und Rekristallisationsverhalten , 1969 .

[17]  H. Kilian Phänomenologische „Thermodynamik“ des Schmelzens von Polymeren , 1969 .

[18]  G. Yeh,et al.  Strain-Induced Crystallization of Isotactic Polystyrene from the Glassy and , 1971 .

[19]  R. Hosemann Crystallinity in high polymers, especially fibres , 1962 .

[20]  R. Hosemann,et al.  Direct analysis of diffraction by matter , 1962 .

[21]  T. Yasukawa,et al.  Mechanism of stereoregular polymerization of butadiene by homogeneous Ziegler‐Natta catalysts. I. Effects of the species of transition metals , 1967 .

[22]  R. Hosemann,et al.  Röntgenkleinwinkel- und Dichtemessungen an verstrecktem und getempertem linearem Polyäthylen , 1969 .

[23]  G. Yeh,et al.  Morphology of strain-induced crystallization of natural rubber. Part II. X-Ray studies on cross-linked vulcanizates , 1973 .

[24]  G. Strobl,et al.  Defect structure and molecular motion in the four modifications of n ‐tritriacontane. I. Study of defect structure in the lamellar interfaces using small angle x‐ray scattering , 1974 .

[25]  E. Ferracini,et al.  Two-dimensional small-angle analysis of isotactic polybutene stretched from the melt , 1974 .